Теплообменник для горячей воды


Использование эффективного теплообменного аппарата для горячей воды позволяет заметно расширить возможности оборудования, которое предназначено для обогрева помещений. От продуктивности его работы во многом зависит качественная и продолжительная работа ядра всей системы — обогревательного котла.

Теплообменник. Что это такое? Устройство системы

Теплообменник, используемый в целях отопления, является достаточно сложным техническим устройством. Данные аппараты передают энергию между двумя теплоносителями, один из которых – горячий, другой – холодный. Как правило, в качестве проводника тепла используется пар или жидкость, намного реже применяют газ.

устройство системы

Данное оборудование не имеет собственного теплового источника. Процесс функционирования системы осуществляется за счет использования энергии, которая идет от системы отопления дома или предприятия. Эффективность передачи тепловой энергии зависит от нескольких основных факторов:

По сути теплообменником для подачи горячей воды, работающим от системы отопления, может служить любая труба, которая будет передавать тепло от источника с температурой, отличной от температуры помещения. Вы можете легко в этом убедиться если посмотрите видео, которое выкладывают на yotube мужики с прямыми руками.


Основные виды теплообменников

Среди большого ассортимента теплообменного оборудования существует всего два основных типа – пластинчатые и кожухотрубные. Второй тип из-за низкого КПД и внушительных габаритов практически исчез с рынка.

Пластинчатый теплообменник – это ряд одинаковых гофрированных пластин, установленных на жесткой металлической станине. Пластины следуют в зеркальном отражении по отношению друг к другу, разделяются они при помощи специальных металлических (стальных) и резиновых прокладок.

пластинчатый теплообменник

Чем больше пластин, чем больше их размер, тем больше площадь полезного теплообмена.

Абсолютно все пластинчатые теплообменные аппараты делятся на два типа:

Разборные теплообменники

разборные теплообменники


Основное преимущество данного типа теплообменных аппаратов состоит в том, что в любой момент времени у Вас имеется возможность доработки, которая заключается в добавлении или удалении пластин.

Этот тип теплообменных аппаратов нашел широкое применение в регионах с жесткой водой, что делает возможным регулярную ручную чистку аппарата от накипи, мусора.

Отсутствие зажимной конструкции позволило выполнить пластинчатые теплообменники более компактными по своим габаритам.

Паяные теплообменники (неразборные)

паяные теплообменники

Давайте выделим основные преимущества паяных теплообменников над разборным типом:

Что касается чистки паяных теплообменников, то она выполняется без разборки основной конструкции.

Если после определенного периода эксплуатации вы стали замечать, что эффективность оборудования стала заметно снижаться, то в него на несколько часов заливается определенный реагент, который справляется со всеми отложениями. Теплообменник не будет функционировать всего несколько часов, после продолжится его нормальный режим работы.

Основные материалы для теплообменных агрегатов

Основным материалом для изготовления современных теплообменных аппаратов является сталь и чугун, которые имеют высокие показатели по теплопроводности.

Теплообменное оборудование из чугуна

теплообменное оборудование из чугуна

Теплообменное оборудование, изготовленное из чугуна, имеет следующие плюсы:

Как и у всех аппаратов, у чугунного теплообменника есть свои минусы:

Стальное теплообменное оборудование


Стальное теплообменное оборудование

Стальной аппарат имеет ряд преимуществ над своим чугунным «собратом»:

Среди недостатков необходимо обратить внимание на следующие позиции:

Изготовление аппарата своими руками

Конструкция внутреннего теплообменника представляет собой некий бак, с помещенной в него трубкой. Чтобы изготовить такой аппарат своими руками Вам необходимо использовать:

Для изготовления теплообменника необходимо скрутить трубку в спираль. Далее в емкости делается два отверстия – выхода. Нижний из них будет использоваться для холодной воды, верхний — для горячей.

Особенности монтажа теплообменного оборудования

Особенности монтажа теплообменного оборудования

Как только все детали аппарата будут готовы, можно приступать непосредственно к монтажу. Эта операция имеет следующую последовательность:

В случае использования аппарата внутреннего типа, необходимо выполнить следующие действия:

Сверху и снизу бак должен быть надежно запаян. Такие меры позволяют избежать попадания воздуха в емкость, что может негативно сказаться на теплопотерях.

Борьба с накипью в системе


Борьба с накипью

Одной из основных проблем эксплуатации любых теплообменных аппаратов является образование накипи.

Слой накипи выступает как некий теплоизоляционный материал, который препятствует быстрому нагреву теплообменника до нужной температуры, из-за чего приходится затрачивать больше электрической энергии.

Сегодня производители используют в своих конструкциях отполированные особым образом трубки, изготовленные из специальных материалов.

Новейшие достижения в борьбе с накипью основаны на магнитном воздействии на воду, что позволяет снизить количество отложений. Образец установки для удаления известковых отложений показан на фото выше.

Особенности расчета теплообменника для ГВС

Выполняя расчет теплообменных аппаратов необходимо учитывать следующие параметры:

Как правило, производительность теплообменника рассчитывается по данным зимнего периода, когда от аппарата требуется максимальная мощность.

Как видно, каждый вид теплообменника имеет схожий принцип работы. У каждого из них есть свои преимущества и недостатки, поэтому выбор того или иного типа напрямую будет зависеть от решения конкретных задач, которые перед вами стоят.


 

 

 

Источник: bydom.ru

Что это такое

Что такое теплообменник для горячего водоснабжения — это устройство, в котором производится обмен тепловой энергией между двумя раздельными средами. Говоря проще, горячая вода, находящаяся в одной емкости, нагревает холодную воду, находящуюся в другой, причем, между собой эти емкости не сообщаются. Простым примером прибора можно назвать трубу с холодной водой, которая помещена в трубу большего диаметра с горячей водой.

Как использовать теплообменник для горячей воды от отопления и в чем заключается принцип его работы в системеВода в меньшей трубе начнет нагреваться, стремясь уравнять температуру с внешней средой. Теплообменник для ГВС принцип работы его не меняется при любом типе устройства.

Для поддержания процесса в стабильном режиме обе жидкости движутся (циркулируют) с определенной скоростью, что позволяет получить устойчивый постоянный процесс.

При правильной конструкции и точной настройке скорости циркуляции обеих жидкостей потери тепла сводятся к минимуму.

Применение аппарата позволяет использовать один источник нагрева для систем отопления и ГВС одновременно, снижая тем самым количество оборудования и расходы на теплоноситель. Прибор для горячего водоснабжения частного дома выгоден тем, что позволяет добиться большей автономности жилища и уменьшить зависимость от сетевых ресурсов.

Для чего нужен


Теплообменник в системе отопления и ГВС может выполнять несколько функций:

  • Нагрев воды для бытовых нужд (системы отопления и ГВС).
  • Стабилизация работы (подогрев теплоносителя от горячей воды в собственном котле).

Как использовать теплообменник для горячей воды от отопления и в чем заключается принцип его работы в системеОтопление дома непосредственно через теплообменник требует наличия теплоносителя со стабильной и регулируемой температурой. Если использовать прямой подогрев теплоносителя в котле, температура будет постоянно меняться, добиться нужной степени нагрева будет очень сложно.

Решает эти проблемы аппарат, в котором регулировка параметров теплоносителя осуществляется плавно и эффективно.

Наличие горячего теплоносителя дает возможность нагрева воды для бытовых нужд.

Учитывая, что вода движется независимо друг от друга, можно использовать тепло одной системы для нагрева другой без всяких ограничений. Эта функция выполняется аппаратом, который осуществляет передачу тепловой энергии от теплоносителя к воде из системы отопления и ГВС, делая ее независимой от окружающих сетей и снимая зависимость от компаний-поставщиков.


От каких факторов зависит эффективность

Как использовать теплообменник для горячей воды от отопления и в чем заключается принцип его работы в системеНа работоспособность влияют несколько факторов:

  • Конструкция устройства.
  • Режим работы, температура отдающего теплоносителя.
  • Величина потерь тепла или, проще, состояние внутренней поверхности трубок (отсутствие накипи или наслоений, работающих как теплоизолятор и снижающих способность к принятию или отдаче тепловой энергии).

Поскольку устройство выбирается на стадии проектирования и монтажа, а режим работы устанавливается при настройке системы отопления в целом, то наиболее важным фактором становится борьба с потерями. Для этого теплообменник бытовой периодически промывают и очищают с помощью различных средств, которых достаточно в продаже.


Для удаления накипи применяют кислотные составы, а жировые отложения очищаются с помощью каустической соды. После очистки устройство тщательно промывают и вновь подключают к оборудованию. Другим средством, осуществляющим профилактику и снижающим степень загрязнения, являются фильтры. С их помощью отсеиваются посторонние частицы, взвесь, жировые соединения. При этом, фильтры также подлежат периодической промывке или замене.

Классификация

Как использовать теплообменник для горячей воды от отопления и в чем заключается принцип его работы в системеВне зависимости от модели, они делятся на стальные и чугунные. Такое деление возникло в процессе развития и формирования систем отопления и водоснабжения.

Традиционно использовались чугунные устройства, поскольку их было легче производить — отливка производилась быстрее и обходилась дешевле, чем изготовление стальных деталей, их сборка, герметизация и т.д.

Кроме того, отсутствие или дороговизна нержавеющих сталей не оставляла никаких вариантов.

Со временем возможности материалов уравнялись, а производственный процесс позволил изготавливать изделия любой сложности из нержавейки. При этом, от чугуна как материала не отказались, так как простота и скорость литьевого производства сохранили свою привлекательность. И по сей день приборы из обоих материалов производятся, активно используются.

Чугунный


Как использовать теплообменник для горячей воды от отопления и в чем заключается принцип его работы в системеТеплообменники из чугуна отличаются большим весом и массивностью. Отливка корпусов с тонкими стенками сложна и ненадежна, поэтому чугунный аппарат всегда значительно тяжелее, чем стальной. Кроме того, отрицательным свойством материала является его хрупкость.

При резких механических или термических воздействиях — ударах, резком заполнении холодного корпуса горячей водой — механизм может треснуть, что не поддается ремонту.

При этом, обычно чугунные корпуса имеют секционное строение, что позволяет изменять размеры и мощность устройства и удалять вышедшие из строя секции. Чугун подвержен коррозии, появлению на внутренней поверхности накипи. Эффективность теплоотдачи у таких механизмов довольно высока, хотя снижена возможность оперативного изменения режима работы.

Стальной

Как использовать теплообменник для горячей воды от отопления и в чем заключается принцип его работы в системеСтальные (нержавеющие) приборы полностью лишены недостатков своих чугунных собратьев.


b>Они прочны, не разрушаются от ударов и резких перепадов температуры, в гораздо меньшей степени подвержены коррозии

(на нержавейку воздействует только электрохимическая коррозия). Сборка их производится прямо на заводе, что осложняет их ремонтопригодность.

Теплоотдача стали высока, она быстро набирает или отдает тепло, что при активных режимах использования может привести к усталостным напряжениям металла, появлению трещин или выходу прибора из строя.

Наиболее распространен пластинчатый теплообменник для отопления, представляющий собой набор плоских пластин с каналами для прохода греющей и нагреваемой среды. Большая площадь пластин способствует эффективной передаче тепла.

Типы моделей

Установлены приборы могут быть в разных точках, что влияет на их эффективность, а также требует различного конструктивного решения. В зависимости от вида и модели источника нагрева могут быть использованы разные типы:

Внутренние

Как использовать теплообменник для горячей воды от отопления и в чем заключается принцип его работы в системеТеплообменники, находящиеся непосредственно в нагревательных устройствах — котлах, печах и т.д. Установка в такой точке дает максимальную эффективность, так как практически отсутствуют потери на нагрев корпуса, на охлаждение теплоносителя во время транспортировки от нагревателя до аппарата.

Чаще всего такие устройства встроены в котел уже на стадии производства, что упрощает задачи по монтажным или наладочным работам — требуется лишь настройка оптимального режима функционирования.

Внешние

Внешние теплообменники устанавливаются отдельно от источника тепла. Такой способ применяется при невозможности или значительной удаленности источника от системы отопления. Например, если в доме используется отопление от сети ЦО, теплообменник бытовой для нагрева холодной воды будет являться внешним устройством. Эффективность такого устройства несколько ниже, чем у внутренних типов, что обусловлено меньшей температурой теплоносителя.

Какой вид лучше выбрать

Как использовать теплообменник для горячей воды от отопления и в чем заключается принцип его работы в системеПодбор теплообменника для гвс осуществляется в случае, если отопление подается не от котла, или в системе его не предусмотрено. Для местных систем отопления или при наличии подключения дома к системе ЦО выбор внешнего устройства очевиден, поскольку иных вариантов не имеется.

Подбор теплообменника производится по имеющимся параметрам системы и обусловлен строением котла, способом получения теплоносителя, величиной необходимого потребления воды и т.д.

Как произвести расчет

Расчет для теплообменника гвс производится путем довольно сложных вычислений, требующих специальной подготовки. Детальный расчет требует составления теплового баланса, учета устройств теплопередачи, расчета средней разности температур и т.д. Все эти операции требуют познаний в области теплотехники, которыми обладает далеко не каждый, а вероятность ошибки очень высока даже у специалиста.

Выход из положения можно найти в сети интернет — онлайн-калькуляторы, в достаточном количестве имеющиеся на сайтах производителей теплового оборудования, позволяют получить нужные данные просто и достаточно надежно. Для проверки расчет следует продублировать несколько раз, сопоставить полученные результаты для выбора наиболее верного.

Монтаж

Как использовать теплообменник для горячей воды от отопления и в чем заключается принцип его работы в системеРаботы по монтажу представляют собой установку и подключение устройства к соответствующим магистралям. Теплообменник водяной необходимо подключить к системе ГВС. Порядок действий определяется типом конструкции устройства и точкой установки в помещении.

Как установить внутренний

Внутренний теплообменник обычно уже установлен и нуждается только в подключении к системе ГВС. Все необходимые действия — присоединение соответствующих патрубков в разрыв отвода от трубопровода ХВС и к вновь образованной линии ГВС.

Как установить внешний

Монтаж внешних устройств производится в непосредственной близости от сети питания. Производится подключение теплоносителя в разрыв питающей магистрали. Система ГВС подключается на выходной патрубок, на входной подключается отвод от ХВС. Выполняется настройка или запуск устройства.

Готовим механизм самостоятельно

Как использовать теплообменник для горячей воды от отопления и в чем заключается принцип его работы в системеДля самостоятельного изготовления следует, прежде всего, определиться с моделью устройства. Изготовить теплообменник для системы отопления своими руками проще всего бойлерного типа, поскольку такой вариант наиболее доступен и эффективен.

Упрощая, такое устройство представляет собой бочку с нагретым теплоносителем, внутри которой находится змеевик или трубная доска с множеством трубок для нагрева ГВС.

Вариантов может быть очень много, каждый мастер привносит в конструкцию какие-то свои идеи.

Водяная рубашка

Самодельный теплообменник водоводяной «водяная рубашка» — это тот самый вариант, о котором уже упоминалось. Труба (емкость), расположенная внутри другой трубы (емкости) с теплоносителем. Изготовление такой модели несложно, но потребует обеспечения герметичности большей емкости, что в домашних условиях непросто сделать. Температурные расширения, неминуемые при эксплуатации, оказывают отрицательное влияние на прочность сварного шва.

Как использовать теплообменник для горячей воды от отопления и в чем заключается принцип его работы в системеЭффективность системы прямо пропорциональна длине внутреннего трубопровода, для чего обычно используют змеевики или подобные устройства, увеличивающие длину и площадь соприкосновения поверхности трубы.

Распространенным вариантом является медная трубка, свернутая кольцами или зигзагами, омываемая горячим теплоносителем из большей емкости.

Трубная доска

Такой прибор представляет собой пучок трубок, присоединенных к двум плоским пластинам с отверстиями (отсюда и название). Пластины отсекают емкости, одна из которых имеет входной и выходной патрубки для поступления холодной воды и вывода нагретой. Вторая емкость служит для обеспечения циркуляции воды, увеличивает длину трубок и, соответственно, площади соприкосновения.

Вся конструкция помещается в корпус с горячим теплоносителем, который нагревает воду в трубках. Такая система требует участия умелого сварщика, так как количество трубок велико, требует качественного присоединения. Нарушение герметичности любого шва приведет к перемешиванию воды с теплоносителем, что недопустимо.

Полезное видео по теме

Теплообменник — несложное, эффективное устройство, необходимое в частном доме позволяет значительно сэкономить на поставках ресурсов. Самостоятельное изготовление прибора вполне возможно, но потребует определенных познаний и качественной сборки.

Источник: stroim.guru

Устройство и принцип работы

Пластинчатый теплообменник (ПТО) обеспечивает переход тепла от нагретого теплоносителя холодному, при этом не перемешивая их, развязывая два контура между собой. Теплоносителем может быть пар, вода или масло. В случае с горячим водоснабжением чаще источником тепла является теплоноситель системы отопления, а нагреваемой средой – холодная вода.

Конструктивно теплообменник представляет собой группу гофрированных пластин, собранных параллельно друг другу. Между ними образуются каналы, по которым течет теплоноситель и нагреваемая среда, притом послойно они чередуются между собой, не перемешиваясь при этом. За счет чередования слоев, по которым текут жидкости обоих контуров, увеличивается площадь теплообмена.

Схема работы пластинчатого теплообменника ГВС
Схема работы теплообменника

Гофрирование чаше выполняется в виде волн, притом ориентированных так, чтобы каналы одного контура располагались под углом к каналам второго контура.

Подключение входов и выходов делаются так, чтобы жидкости текли навстречу друг другу.

Поверхность и материал пластин подбирается исходя из требуемой мощности теплообмена, вида теплоносителя. В особенно эффективных и продуманных теплообменниках поверхность формуется для возбуждения завихрений возле поверхности пластины, повышая теплообмен, не создавая сильного сопротивления общему току.

Теплообменник включается между двумя контурами:

  1. Последовательно к системе отопления или параллельно с наличием регулирующей арматуры.
  2. К входу от холодного водопровода и выходом к потребителю ГВС.

Холодная вода, протекая через теплообменник нагревается за счет тепла от системы отопления до требуемой температуры и подается на кран потребителя.

Основные характеристики пластинчатого теплообменника:

  • Мощность, Вт;
  • Максимальная температура теплоносителя, оС;
  • Пропускная способность, производительность, литры/час;
  • Коэффициент гидравлического сопротивления.

Мощность зависит от общей площади теплообмена, перепада температур в обоих контурах между входов и выходом и даже от числа пластин.

Максимальная температура задается подбором материалов и способом соединения пластин и корпуса теплообменника.

Пропускная способность повышается с увеличением числа пластин, так как они подключаются фактически параллельно, то каждая новая пара пластин добавляет дополнительный канал для тока жидкости.

Коэффициент гидравлического сопротивления важен при расчете нагрузки на систему отопления, где от этого зависит выбор циркуляционного насоса, немаловажен и для других источников тепла. Зависит от типа гофрирования пластин и размера сечения каналов и их количества.

Для наиболее востребованных случаев, каким является обеспечение горячей водой частного хозяйства, дома или квартиры производятся готовые теплообменники с постоянными характеристиками.

Расчет

Выбор подходящего теплообменника сложно выполнить, оперируя только одной лишь его мощностью или пропускной способностью. Эффективность подготовки ГВС зависит и от состояния теплоносителя в первом контуре и во втором, от материала и конструкции теплообменника, скорости и массовой части теплоносителя, проходящего в единицу времени через пластинчатый теплообменник. Однако, естественно следует предварительно выполнить расчет, позволяющий прийти к определенному сочетанию мощности и производительности для выбора подходящей модели.

Базовые данные необходимые для расчета:

  • Тип среды в обоих контурах (вода-вода, масло-вода, пар-вода)
  • Температура теплоносителя в системы отопления;
  • Максимально допустимое снижение температуры теплоносителя после прохождения теплообменника;
  • Начальная температура воды, используемой для ГВС;
  • Требуема температура ГВС;
  • Целевой расход горячей воды в режиме максимального потребления.

Кроме этого в формулах для расчета задействована удельная теплоемкость жидкости в обоих контурах. Для ГВС используется табличное значение для начальной температуры воды, чаще +20оС, равное 4,182 кДж/кг*К. Для теплоносителя следует отдельно находить значение удельной теплоемкости, если в его составе имеется антифриз или другие присадки для улучшения его качеств. Аналогично для централизованного отопления берется приблизительное значение или фактическое на основании данных теплокоммунэнерго.

Целевой расход определяется количеством пользователей для горячей воды и количеством устройств (краны, посудомоечная и стиральная машинка, душ), где она будет использована. Согласно требованиям СНиП 2.04.01-85 необходимы следующие значения расхода горячей воды:

  • для раковины – 40 л/ч;
  • ванная – 200 л/ч;
  • душевая – 165 л/ч.

Значение для раковины умножается на количество устройств в доме, которые могут использоваться параллельно, и складывается со значением для ванны или душевой в зависимости от того, что именно используется. Для посудомоечной и стиральной машинки значения берутся из паспорта и инструкции и только при условии, что они поддерживают использование горячей воды.

Второе базовое значение – это мощности теплообменника. Рассчитывается исходя из полученного значения расхода жидкости и разницы температур воды на входе в теплообменник и на выходе.

P = m * С *Δt,

где m – расход воды, С – удельная теплоемкость, Δt – разница температур воды на входе и выходе ПТО.

Для получения массового расхода воды следует расход, выраженный в л/ч умножить на плотность воды 1000 кг/м3.

КПД теплообменников оценивается на уровне 80-85%, и многое зависит от конструкции самого оборудования, так что полученное значение следует разделить на 0,8(5).

С другой стороны ограничением по мощности будет расчет, выполненный со стороны первого контура с теплоносителем, где, используя уже разницу допустимых температур для системы отопления, получаем максимально допустимый забор мощности. Конечный результат будет компромиссом между двумя полученными значениями.

Если забора мощности для нагрева нужного количества горячей воды не хватает, то разумнее использовать две ступени подогрева и, соответственно, два теплообменника. Мощность распределяется между ними поровну от требуемого расчета. Одна ступень выполняет предварительный нагрев, используя в качестве источника тепла обратку отопления с пониженной температурой. Второй ПТО уже нагревает окончательно воду за счет горячей воды с подачи отопления.

Схема обвязки

Подключают теплообменник к системе отопления несколькими способами. Самый простой вариант с параллельным включением и наличием регулировочного клапана, работающего от термоголовки.

параллельная схема обвязки пластинчатого теплообменника

Обязательными являются запорные шаровые вентили на всех выводах теплообменника, чтобы иметь возможность полностью перекрыть доступ жидкости и обеспечить условия для демонтажа оборудования. Регулировкой мощности и, соответственно, нагревом горячей воды должен заниматься клапан с управлением от термоголовки. Клапан устанавливается на подводящую трубу от отопления, а датчик температуры на выход контура ГВС.

При цикличной организации ГВС с наличием накопительной емкости устанавливается дополнительно тройник на входе нагреваемого контура для включения холодной водопроводной воды и обратки по ГВС. Избежать ненужного тока в обратном направлении в ветке горячей и холодной воды не даст обратный клапан.

Недостатком этой схемы является сильно завышенная нагрузка на систему отопления и неэффективный нагрев воды во втором контуре при большем перепаде температур.

Гораздо продуктивнее и надежнее работает схема с двумя теплообменниками, двухступенчатая.

двухступенчатая схема обвязки с двумя теплобменниками
1 – пластинчатый теплообменник; 2 – регулятор температуры прямого действия: 2.1 – клапан; 2.2 – термостатический элемент; 3 – циркуляционный насос ГВС; 4 – счетчик горячей воды; 5 – электро-контактный манометр (защита от «сухого хода»)

Идея заключается в использовании двух теплообменников. В первой ступени используется с одной стороны обратка системы отопления, а с другой холодная вода из водопровода. Это дает предварительный нагрев примерно на 1/3 или половину от необходимой температуры, при этом не страдает обогрев дома. Включение контура выполняется последовательно с байпасом, на котором уже закреплен игловой вентиль, с помощью которого регулируется объем теплоносителя.

Второй ПТО, вторая ступень, подключаемая параллельно системе отопления – это с одной стороны подача горячего теплоносителя от котла или котельной, а с другой уже подогретая на первой ступени вода ГВС.

Регулировкой первой ступени заниматься нет нужды. Устанавливаются лишь шаровые вентили на все четыре отвода и обратный клапан на подачу холодной воды.

Обвязка второй ступени идентичная параллельному подключению за исключением того, что вместо холодной воды подключается уже подогретая вода с первой ступени.

Источник: udobnovdome.ru


Leave a Comment

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.