Какой толщины брать воздушную прослойку при теплотехническом расчёте наружной стены дома


Сегодня мы рассмотрим теплопроводность воздушной прослойки. Обратите внимание! Темой для отдельного разговора является теплопроводность самого воздуха и его зависимость от температуры и давления. В рамках же текущей статьи мы поговорим именно о теплопроводности прослойки воздуха, и применении этих данных при расчете ограждающих конструкций.

Прежде всего отметим, что передача тепла через воздушную прослойку при разности температур на ее противоположных поверхностях, может происходить одним из трех возможных способов: путем излучения, путем конвекции,  и путем теплопроводности. Подробнее это показано на рис. 1.12.

Теплопроводность воздушной прослойки

Понятно, что теплопроводность неподвижного воздуха очень мала. Поэтому, если бы в воздушных прослойках воздух находился в состоянии покоя, термическое сопротивление таких прослоек воздуха было бы очень высоким.


На самом же деле, в воздушных прослойках ограждающих конструкций воздух всегда движется. К примеру, у более теплой поверхности вертикальных прослоек он перемещается вверх, а у холодной — вниз. Понятно, что из-за такого движения термическое сопротивление воздушных прослоек снижается, и становится тем меньше, чем сильнее конвекция.

Поэтому в прослойках с движущимся воздухом количество тепла, передаваемого путем теплопроводности, очень мало по сравнению с теплопередачей путем конвекции.

Более того. По мере увеличения толщины воздушной прослойки, возрастает и количество тепла, которое передается путем конвекции. Поскольку меньше становится влияние трения воздушных струек о стенки. Следствием этого является тот факт, что для воздушных прослоек не существует прямой пропорциональности между увеличением толщины слоя и значением его термического сопротивления (если помните, такая прямая пропорция является характерной для твердых материалов).

Значение коэффициента, который можно было бы принять для свободной конвекции у какой-либо поверхности, уменьшается вдвое. Поскольку при передаче тепла конвекцией от более теплой поверхности воздушной прослойки к более холодной, преодолевается сопротивление двух пограничных слоев воздуха, прилегающих к этим поверхностям.

Теперь давайте разберемся с зависимостью количества тепла, передаваемого через воздушную прослойку путем излучения.

Количество лучистого тепла, передаваемого от более теплой поверхности к более холодной, не зависит от толщины воздушной прослойки. Как мы уже сказали, оно определяется коэффициентом излучения поверхностей и разностью, пропорциональной четвертым степеням их абсолютных температур (1.3).

Теперь давайте подведем итог. В общем виде поток тепла Q, передаваемый через воздушную прослойку, может быть выражен таким образом:


поток тепла Q, передаваемый через воздушную прослойку

  • где αк — коэффициент теплообмена при свободной конвекции;
  • δ — толщина прослойки, м;
  • λ — коэффициент теплопроводности воздуха в прослойке, ккал·м·ч/град;
  • αл — коэффициент теплообмена за счет излучения.

На основании данных экспериментальных исследований обычно трактуют величину коэффициента теплопередачи воздушной прослойки как вызванную теплообменом, происходящим путем конвекции и теплопроводности:

коэффициент теплопередачи воздушной прослойки вызванной теплообменом, происходящим путем конвекции и теплопроводности

но зависящую преимущественно от конвекции (здесь λэкв — условная эквивалентная теплопроводное™ воздуха в прослойке); тогда при постоянном значении Δt термическое сопротивление воздушной прослойки Rв.п будет:


термическое сопротивление воздушной прослойки при постоянном значении Δt

Явления конвективного теплообмена в воздушных прослойках зависят от их геометрической формы, размеров и направления потока тепла; особенности этого теплообмена могут быть выражены величиной безразмерного коэффициента конвекции ε, представляющего отношение эквивалентной теплопроводности к теплопроводности неподвижного воздуха ε=λэкв/λ.

Путем обобщения с помощью теории подобия большого количества экспериментальных данных М. А. Михеевым установлена зависимость коэффициента конвекции от произведения критериев Грасгофа и Прандтля, т. е.:

зависимость коэффициента конвекции от произведения критериев Грасгофа и Прандтля

Коэффициенты теплопередачи αк’, полученные из выражения

установленного на основе этой зависимости при tср=+10°, приведены для температурного перепада на поверхностях прослойки, Δt=10° в табл. 1.6.

Коэффициенты теплопередачи αк в зависимости от прослойки и направления движения тепла


Относительно небольшие величины коэффициентов передачи тепла через горизонтальные прослойки при потоке тепла сверху вниз (например, в цокольных перекрытиях отапливаемых зданий) объясняются малой подвижностью воздуха в таких прослойках. Ведь наиболее теплый воздух сосредоточивается у более нагретой верхней поверхности прослойки, затрудняя конвективный теплообмен.

Величина передачи тепла излучением αл, определяемая на основе формулы (1.12), зависит от коэффициентов излучения и температуры. Например, для получения αл в плоских протяженных прослойках, достаточно умножить приведенный коэффициент взаимооблучения С’ на соответствующий температурный коэффициент принятый по табл. 1.7.

значения температурного коэффициента в зависимости от средней температуры воздушной прослойки

Так, например, при С’=4,2 и средней температуре прослойки, равной 0°, получим αл=4,2·0,81=3,4 ккал/м2·ч·град.

В летних условиях величина αл увеличивается, а термическое сопротивление прослоек уменьшается. Зимой, для прослоек, расположенных в наружной части конструкций, отмечается обратное явление.

Для применения в практических расчетах нормы строительной теплотехники ограждающих конструкций СНиП приводят значения термических сопротивлений замкнутых воздушных прослоек


значения термических сопротивлений замкнутых воздушных прослоек

указанные в табл. 1.8.

Величины Rв.пр, приведенные в таблице, соответствуют разности температур на поверхностях прослоек, равной 10°. При разности температур 8°, величина Rв.пр умножается на коэффициент 1,05, а при разности 6° — на 1,10.

зависимость термического сопротивления воздушных прослоек от толщины прослоек

Приведенные данные о термическом сопротивлении относятся к замкнутым плоским воздушным прослойкам. Под замкнутыми понимаются воздушные прослойки, ограниченные непроницаемыми материалами, изолированные от проницания воздуха извне.

Поскольку пористые строительные материалы воздухопроницаемы, к замкнутым могут быть отнесены, например, воздушные прослойки в конструктивных элементах из плотного бетона или других плотных материалов, практически не пропускающих воздуха при тех величинах разности давлений, которые типичны для эксплуатируемых зданий.

Экспериментальные исследования показывают, что термическое сопротивление воздушных прослоек в кирпичной кладке снижается примерно вдвое по сравнению с величинами, указанными в табл. 1.8.

Поэтому при недостаточном заполнении швов между кирпичами раствором (например, при выполнении работ в зимних условиях) воздухопроницаемость кладки может возрасти, а термическое сопротивление воздушных прослоек приблизиться к нулю.


[box type=»info» align=»» class=»» width=»»]Достаточная защита конструкций с воздушными прослойками от воздухопроницания является совершенно необходимой для обеспечения требуемых теплофизических свойств ограждающих конструкций.[/box]

Иногда в бетонных или керамических блоках предусматривают прямоугольные пустоты небольшой длины, часто приближающиеся к квадратной форме. В таких пустотах передача лучистого тепла возрастает за счет дополнительного излучения боковых стенок.

Прирост величины αл незначителен при отношении длины прослойки к ее толщине, равной 3:1 или более; в пустотах квадратной или круглой формы этот прирост достигает 20%.

Эквивалентный коэффициент теплопроводности, учитывающий передачу тепла конвекцией и излучением в квадратных и круглых пустотах значительных размеров (70—100 мм) существенно возрастает. Поэтому использование таких пустот в материалах с ограниченной теплопроводностью (0,50 ккал/м·ч·град и менее) не имеет смысла с точки зрения теплофизики.

Применение квадратных или круглых пустот указанного размера в изделиях из тяжелых бетонов имеет главным образом экономическое значение (уменьшение веса); это значение утрачивается для изделий из легких и ячеистых бетонов, поскольку использование таких пустот может привести к понижению термического сопротивления ограждающих конструкций.


оптимальное расположение воздушных прослоек

Рис. 1.13. Целесообразное многорядное расположение воздушных прослоек

В противоположность этому, применение плоских тонких воздушных прослоек, особенно при многорядном их расположении в шахматном порядке (рис. 1.13), целесообразно. При однорядном размещении воздушных прослоек более эффективно их расположение в наружной части конструкции (если обеспечена ее воздухонепроницаемость), поскольку термическое сопротивление таких прослоек в холодный период года возрастает.

Применение воздушных прослоек в утепленных цокольных перекрытиях над холодными подпольями более рационально, чем в наружных стенах, поскольку передача тепла конвекцией в горизонтальных прослойках этих конструкций существенно уменьшается.

Теплофизическая эффективность воздушных прослоек в летних условиях (защита от перегрева помещений) снижается по сравнению с холодным периодом года; однако эта эффективность возрастает за счет использования прослоек, вентилируемых в ночное время наружным воздухом.

При проектировании полезно иметь в виду, что ограждающие конструкции с воздушными прослойками обладают меньшей влажностной инерцией по сравнению со сплошными. В сухих условиях конструкции с воздушными прослойками (вентилируемыми и замкнутыми) быстро подвергаются естественной сушке и приобретают дополнительные теплозащитные свойства за счет малой влажности материала.


Во влажных же помещениях все происходит наоборот — конструкции с замкнутыми прослойками могут сильно переувлажняться, что связано с потерей теплофизических качеств и вероятностью преждевременного их разрушения.

Из сказанного выше понятно, что передача тепла через воздушные прослойки в большой мере зависит от излучения. Однако применение отражательной изоляции с ограниченной долговечностью (алюминиевой фольги, окраски и т. д.) для повышения термического сопротивления воздушных прослоек может быть целесообразным только в конструкциях сухих зданий с ограниченным сроком службы.

В сухих капитальных зданиях дополнительный эффект отражательной изоляции также полезен, но следует учитывать, что даже при утрате ее отражательных качеств теплофизические свойства конструкций должны быть не менее требуемых с тем, чтобы обеспечить нормальную эксплуатацию конструкций.

В каменных и бетонных конструкциях с большой начальной влажностью (ровно, как и  во влажных помещениях) использование алюминиевой фольги практически теряет всяческий смысл. Поскольку ее отражательные свойства могут быть быстро нарушены из-за коррозии алюминия во влажной щелочной среде.


Кроме того следует отметить, что применение отражательной изоляции наиболее эффективно в горизонтальных замкнутых воздушных прослойках при направлении потока тепла сверху вниз (цокольные перекрытия и т. д.).  То есть именно тогда, когда конвекция почти отсутствует и передача тепла происходит в основном путем излучения.

[box type=»success» align=»» class=»» width=»»]Таким образом становится ясно, что отражательной изоляцией достаточно покрыть только одну из поверхностей воздушной прослойки.[/box]

А именно — более теплую, сравнительно гарантированную от эпизодического появления конденсата, быстро ухудшающего отражательные свойства изоляции.

Иногда возникают предложения о теплофизической целесообразности разделения воздушных прослоек по толщине экранами из тонкой алюминиевой фольги.  Предлагается это в целях резкого уменьшения потока лучистого тепла.

Однако такие методы не имеет смысла использовать для ограждающих конструкций капитальных зданий, поскольку малая эксплуатационная надежность такой теплозащиты не соответствует необходимой долговечности конструкций указанных зданий.

Расчетное значение термического сопротивления воздушной прослойки с отражательной изоляцией на более теплой поверхности повышается примерно вдвое по сравнению с величинами, указанными в табл. 1.8.

В южных районах конструкции с воздушными прослойками обладают достаточной эффективностью в отношении защиты помещений от перегрева. Применение отражательной изоляции приобретает в этих условиях особенно большой смысл, поскольку превалирующая часть тепла передается в жаркое время года излучением.


Поэтому имеет смысл  экранировать наружные стены многоэтажных зданий лучеотражающими долговечными отделками в целях повышения теплозащитных свойств ограждений и снижения их веса.  Подобные экраны необходимо устраивать таким образом, чтобы под экранами была расположена воздушная прослойка, а другая поверхность была покрыта окрасочной или иной экономичной отражательной изоляцией.

Усиление конвекции в воздушных прослойках (например, за счет активного вентилирования их наружным воздухом, поступающим с затененных, озелененных и обводненных участков прилегающей территории) превращается для летнего периода в положительный теплофизический процесс.

В противоположность этому, в зимних условиях такой вид переноса тепла, в большинстве случаев, совершенно нежелателен.

По материалам работы В.М. Ильинского «Строительная теплофизика (ограждающие конструкции и микроклимат зданий)»

А теперь давайте подумаем. Температура воздуха Зимой -30, Летом +30. Что-то неважные характеристики для лучшего утеплителя на Земле. Согласны? Странно получается. Вроде живем в Самом Лучшем утеплителе, а дома строить надо и для защиты от этого Самого Лучшего мы используем то, что похуже…?!!

-А! Точно! Вакуум! Самый лучший утеплитель на Земле!

Давайте все таки подумаем. Между Солнцем и Землей, немного ни мало 149  597 870,691 км прекрасного по качеству вакуума… как-то не вяжется. Согласны?

Надо откинуть Эмоции, Ощущения и посмотреть, а как вообще тепло передается, теряется. Ведь защита нам необходима не от Холод/Тепло, а от нежелательной потери из-за утечки.

Конвекция — (от лат. convectiō — «доставка») — явление переноса теплоты в жидкостях или газах путем перемешивания самого вещества (как вынужденно, так и самопроизвольно). Подул ветер, открыли окно и все тепло улетело.

Теплопередача — физический процесс передачи тепловой энергии от более горячего тела к более холодному либо непосредственно (при контакте), либо через разделяющую (тела или среды) перегородку из какого-либо материала.

Инфракрасное — (ИК-излучение, ИК-лучи) — электромагнитное излучение, занимающее спектральную область между красным концом видимого света (с длиной полны l, ок. 0,76 мкм) и коротковолновым радиоизлучением (l~1-2 мм). Попали короткие волны на стену и нагрели её перейдя в более длинный (тепловой) диапазон. Воздух и Вакуум пропускают ИК волны. Какие тогда они хорошие утеплители.

А кто лучше рассеивает ИК волны? А у кого самая большая теплоемкость для поглощения тепла (холода) от конвекции и при контакте (теплопроводность)? Кто этот красавчик? Который защищает лучше всех от низких и высоких температур? При любом типе передачи тепла…

Это ВОДА! Именно она! Самый лучший утеплитель на Земле. Около 71 % поверхности Земли покрыто водой (океаны, моря, озёра, реки, лёд). Имеет три агрегатных состояния — Газообразное (пар), Жидкое (вода), Твердое (лёд).

С одной стороны обладает высокой Теплоемкостью 4,2 кДж/(кг*К) (к примеру Воздух — 1,03 кДж/(кг*К)), с другой легко переходит из одного состояния в другое, при -1 твердое , а уже при +1 жидкое и всегда пар, но с разной концентрацией. При этом прекрасно рассеивает Лучистое тепло, аккумулирует тепловую энергию и передает её за счет конвекции!

Охладила Землю за счет испарения влаги, сконденсировалась дождем на Землю и снова испарилась… Там тепло взяла, а там отдала. Пропитала Землю отдав избыток тепла и снова в путь!

От морозов под снегом спасаются озимые, под льдом рыбы. Эскимосы строят Иглу (традиционное жильё из льда и снега) и спасаются от лютых морозов -50. Никакие современные утеплители на это не способны. Мало того, вода при замерзании выделяет тепло! Птицы ходят по льду на реках и озерах грея лапки. И чем сильней мороз, тем больше тепла! Вот Вам уникальный Самый Лучший утеплитель на Земле! не Просто сохраняет, переносит, замедляет, но и Выделяет Тепло!

А почему не распространена в строительстве? А ответ прост… Не технологична! Много возни, да и микроорганизмы не дремлют.

Вот и получается, что самый эффективный утеплитель легко доступный и к сожалению абсолютно не технологичный! Мало того. Воздух позволяет формировать пустоты в искусственных утеплителях и при этом не требует к себе внимания. А попробуйте удержать воду в одном состоянии, которое Вам именно сейчас необходимо. Очень энергозатрат но. Дорого.

Так,  да не совсем так… Ведь я не зря сказал «почему не распространен»… Есть. Используем мы и наши предки. Где? А вот ждите тему «Вода. Все за и против» ????

ЗЫ: Но каково, когда сам утеплитель выделяет тепло? Интересно… Может к эскимосам податься ????

С Уважение, Александр Терехов.

Все-таки уточняю о расчете термического сопротивления стен с воздушными прослойками.

1. Невентилируемые (замкнутые) воздушные прослойки учитываются при расчете сопротивления. Величина сопротивления замкнутых ВП принимается по таблице Е.1 СП 50. Такая прослойка всегда увеличивает общее сопротивление.

Слои конструкции, расположенные между воздушной прослойкой, вентилируемой наружным воздухом, и наружной поверхностью ограждающей конструкции не учитываются при расчете тепловой инерции и паропроницания.

2. Вентилируемые воздушные прослойки теперь рассчитываются по СП 345. Вентилируемая прослойка может как увеличить, так и уменьшить общее сопротивление. Это зависит от размеров прослойки, условий входа и выхода воздуха, а также теплотехнических неоднородностей креплений навесного фасада. У таких прослоек КТО может быть и 0.6 (помимо КТО несущей стены).

Необходимость обязательного устройства вентилируемой прослойки напрямую каким-либо пунктом норм прямо не устанавливается. Такую прослойку необходимо делать логически — если уж решили делать не нормальные, прочные, стены, а облицовывать их эффективными утеплителями, то надо озаботиться и о том, чтобы «навесной фасад» продержался не только гарантийный срок в 1 год, но и все 12, а то и 25 (как уверяют лохов) лет. А потом его можно «легко заменить». Только «Дэнги, дэнги давай!».

Можно и «научно» необходимость ВП установить путем расчетов влажностного режима наружных стен с НФС с вентилируемой воздушной прослойкой по СП 345, в том числе в нестационарном режиме. Чтобы средняя влажность утеплителя и основания в месяц наибольшего увлажнения не превышала расчетную влажность материала для условий эксплуатации.

Здравствуйте! Мне часто приходится встречаться с мнением что воздух — это сам по себе хороший утеплитель, в частности в одежде, и что мол чем больше пространства свободного — тем теплее одежда, что зимняя маска (балаклава) не должна прилегать к лицу плотно, чтобы оставался воздушный зазор между маской и лицом, для лучшего утепления. Однако это всё не более чем миф, полученный из недостатка фундаментальный представлений физических процессов.

Существует три способа передачи тепла (тепло — это энергия движения частицы), я своими словами с вашего позволения:

  • Контактный — когда одна частица ударяет другую и передает ей свою энергию. Это например когда вы прикасаетесь к утюгу пальцем.
  • Конвекционный — когда при соединении теплого и холодного они перемешиваются. Например вы открываете окно в морозный день и в комнату врывается холодный воздух а из комнаты теплый, происходит перемешивание.
  • Инфракрасный — когда тепло передается через ИК излучение. Все движущиеся частицы постоянно испускают ИК, но в условиях Земли, они тут же получают примерно столько же ИК от всех соседних объектов, поэтому ИК передача тепла в земных условиях мало часто значима. А вот в открытом космосе любой теплый предмет очень быстро будет передавать инфракрасным излучением свое тепло в пространство и быстро остынет почти до абсолютного нуля (т.к. даже в открытом космосе много разреженного газа с какой то температурой)

На самом деле, вообще было бы идеально иметь утеплитель вообще без чего то, т.е. вакуум, там теплопередача конвекцией и контактом будет нулевой, но в условиях Земли это тяжело добится, т.к. внешнее давление сожмет любой легкий предмет с вакуумом внутри. Поэтому приходится использовать утеплители с тем что имеем — с воздухом.

Перейдем к главному, к версии что сам воздух по себе — хороший теплоизолятор (“утеплитель”): Представим, ну скажем туже лицевую зимнюю маску. Если она одета свободно и между маской и лицом есть 2 см воздушной прослойки. Этот воздух движется там совершенно свободно и теплый воздух от контакта с лицом поднимается наверх, а холодный — от поверхности маски — вниз, это движение постоянно и оно создает мощное завихрение, теплый воздух замещается холодным (конвекционный способ передачи тепла).

Это завихрение тем быстрее чем больше свободное пространство (поэтому в утеплителях стараются делать как можно больше пор, чтобы сами поры были как можно меньше, для минимизации скорости конвекции воздуха внутри них, при этом, чем более поры закрытые — тем лучше.

Кто лежал на надувном матрасе тот знает что он весьма “холодный” — тело быстро остывает от него, он “холодный”, как раз за счет большого воздушного пространства внутри, где мощные конвекционные потоки быстро передают тепло. В тоже же время, кто лежал на “самонадувных” матрасах, значит насколько они “теплые”, т.е. они очень плохо передают тепло, т.к. внутри у них находится поролон — который блокирует конвекционные потоки воздуха, такой матрас очень теплый, не смотря на то что он в 3-6 раз тоньше обычного надувного!

Попролон под электронным микроскопом. Увеличение в 180 раз.
Попролон под электронным микроскопом. Увеличение в 180 раз.

Точно так же “работает” воздух и в одежде! В куртках с утеплителем множество тонких пересекающихся волокон, которые сильно снижают конвекционные воздушные потоки и тепло передается значительно медленнее, значит куртка теплее. Если же тот же самый объем куртки просто надуть воздухом — она будет очень “холодной”! Конвекционные потоки быстро будут передавать тепло от вашего тела наружу, на холодную окружающую среду.

Миф, что между одеждой и телом должен быть зазор для воздушной прослойки и утепления, сохраняется ещё и потому, что рекомендуется в мороз надевать свободную обувь и одежду, но имеется в виду не то, что должен быть воздушный зазор, а что просто одежда не должна сжимать сильно тело, чтобы кровь свободно циркулировала и согревала ваши конечности, вот и всё, только поэтому.

В итоге: для наибольшего утепления лучше всего чтобы одежда и обувь плотно прилегли к телу без воздушных зазоров, но в то же время, чтобы конечности не были сильно сжаты одеждой.


Использованные источники

  1. termoizol.com/teploizoliruyushtaya-sposobnosty-vozdushnh-prosloek.html
  2. wayhome.tv/2012/02/samyj-luchshij-teplitel-na-zemle/
  3. forum.dwg.ru/showthread.php?t=98111
  4. zen.yandex.ru/media/id/5e3659b0986b38531a568476/vozduh-kak-uteplitel-mif-5e3da290a4700360727f237b

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.