Выбор, обвязка и установка насоса в скважину своими руками
Гидравлические механизмы, перемещающие жидкости созданием потока жидкой среды и повышением ее энергии называются насосами.
Частичный расход этой энергии осуществляется на гидравлические и механические сопротивления, а остальной создает избыточное давление, под которым происходит перемещение жидкости от насоса к месту назначения. Существует множество типов различных типов насосов.
В технологических схемах перемещения и отведения воды большую востребованность приобрели центробежные насосы, отличающиеся высокой производительностью, напором, КПД. (Кстати, о классификации центробежных насосов Вы можете прочитать в этой статье).
Принцип действия

Основными комплектующими элементами являются спиралевидный корпус и жестко закрепленное колесо с двумя дисками и лопастями между ними.
От электропривода колесу придается вращение. Жидкость от центра колеса центробежными силами перемещается по криволинейным лопаткам к периферийным поверхностям колеса.
Повышенное давление выталкивает жидкость в напорный патрубок. Возникающее пониженное давление в центральной области рабочего колеса всасывает жидкость из емкости, находящейся при атмосферном давлении.
Некоторые разновидности
Тип К. Насосы центробежные консольные с односторонним или двусторонним входом.
Получили распространение для циркуляции воды в схемах центрального отопления, снабжения водой общественных зданий, жилых домов, организаций и др. (Статью о центробежных насосах для воды Вы можете прочитать здесь).
Насосы этого типа обладают производительностью от 4-х до 360 м3/ч и напором от 8 до 98 м.в.с.
Тип КМ. Консольно-моноблочные.
По сравнению с насосами типа К у них отсутствует собственный вал.
Корпус насоса соединен с фланцем электродвигателя. Проточные части одинаковы.
Обладают одинаковыми параметрами с насосами типа К.

Такая конструкция способствует компактности и удобному расположению разводки трубопроводов.
Боковое поступление жидкости к насосу реализуется плавным подводом всасывающего канала. Он направлен к рабочему колесу снизу.
Установка
Монтаж производится поблизости с емкостями, чем создается прямая и короткая линия всасывания.
Расположение агрегата ниже уровня жидкости обеспечивает его заливку самотеком.
Размещение горизонтальных насосов производят на плиты или рамы. Затем реализуют их выверку в плане по вертикалям и горизонталям. Жесткость опорной рамы в различных ее точках обеспечивается фундаментом. Размещение сборочных единиц производится на раме. Насос центрируют с закрепленным трубопроводом.
Для горизонтальных насосов ответственным этапом является центрирование валов и полумуфт. После проведения монтажных работ агрегаты испытывают на холостом ходу и под нагрузкой.
При установке вертикальных агрегатов также производят выверку рам и плит. Центровку агрегата производят по вертикальной оси.
Замечание специалиста: в разводке трубопроводов линии всасывания не допускаются вибрации и кавитация, а линия всасывания должна иметь прямой участок длиной более 2-х диаметров трубопровода и не допускать воздушных карманов.
На линии выброса устанавливается запорная арматура. Функционирование насоса с системой под давлением требует установки обратного клапана. По окончании монтажа агрегат подвергают испытаниям.
Основные требования к обвязке трубопроводов
При обвязке всасывающих трубопроводов необходимо стремиться к минимальному количеству поворотов.
Во избежание образования воздушных пробок выполнять уклон от емкости к насосному агрегату, имеющему вертикальный патрубок всасывания.
Обвязка не должна препятствовать осмотру агрегата. И проведению профилактических работ. Нельзя прокладывать разводку трубопроводов на полу насосного отделения в проходах, в предусмотренных подъездах к насосным агрегатам.
Насосы для подачи воспламеняющихся, агрессивных и токсичных жидкостей необходимо оснащать необходимыми средствами и КИП обеспечения безопасности. Опасные жидкости требуется перекачивать с герметичной запорной арматурой.
По возможности рекомендуется осуществлять регулирование подачи установкой дросселей. В необходимых случаях предусмотреть байпас.
Проверочный пуск
Перед пусковыми работами проводят проверку степени затягивания резьбовых соединений, очищают насос от пыли и грязи, проверяют смазочные системы.
Проверочный пуск агрегата выполняется при небольшой нагрузке.
Порядок подготовки следующий:
-
- Всю запорную арматуру на линии подачи, а также на линиях подключения контрольно-измерительных приборов закрывают. Запорная арматура на трубопроводе всасывания допускается перекрытой на 80%.
- Краны подачи смазок, хладоагентов открывают.
- Насос заполняется жидкостью.
- Закрывают вентиль выхода воздуха.
- При наличии байпаса, его открывают.
- Производят включение электродвигателя.
- Краны к манометрам открывают.
Важный момент: запрещено проводить пусковые испытания при отсутствии перекачиваемой жидкости и отсутствии охлаждения, а также допускать функционирование насоса при перекрытой запорной арматуре на подающем трубопроводе более 3-х минут.
- При выходе на номинальные параметры скорости вращения вала и давления подачи запорную арматуру на подающем трубопроводе установить в положение «открыто». Байпас закрыть.
- Медленно переводят напорную задвижку в положение «открыто», чтобы не нагрелись насосный корпус и электромотор. Отслеживать показания приборов КИП. Наблюдать за ритмичным повышением нагрузки электромотора. При перегрузке, наличии резких ударов осуществить остановку. Остановку осуществляют сначала постепенным перекрытием всасывающей задвижки.
Проверка агрегата считается законченной, если была достигнута устойчивая работа на протяжении двух часов.
Техническое обслуживание
Техобслуживание центробежных насосов проводится внешним осмотром и контролем:
- соединений трубопроводов;
- сальниковых уплотнений;
- надежности креплений с фундаментными крепежными элементами;
- центрирование насоса с электродвигателем.
При использовании агрегата по 15 часов/сутки заменяют сальниковое уплотнение.
Разборка конструкции осуществляется в следующем порядке:
- Снимают приборы КИП.
- Проводят разборку соединительной муфты с насосом.
- Демонтаж сальникового уплотнения, корпуса насоса.
- Демонтаж вала с находящимися на нем элементами.
- Демонтаж элементов, контактируемых с колесом.
Типичные повреждения на поражения коррозионного характера деталей корпуса, заборного патрубка, износ вала в районах контакта с сальником, колесом, подшипниками. Износ лопастей.
Изношенные детали заменяют или восстанавливают. Подшипники заполняют новой смазкой. Проводят смену уплотнительных прокладок, сальников. Осуществляют регулирование зазора между корпусом и колесом.
После сборки контролируют вращение рабочего колеса центробежного насоса. Центровка насоса с электромотором выполняется с соблюдением нормативных допусков.
Предлагаем Вашему вниманию интересный вебинар, посвященный вопросам монтажа, центровки и обвязки центробежных насосов:
Ректификационная колонна. Применяемые на НПЗ и НХЗ ректификационные колонны классифицируют по технологическому назначению (стабилизационные, отпарные и т. п.), давлению (работающие под давлением, атмосферные, вакуумные), способу осуществления контакта между паром и жидкостью (тарельчатые, насад очные), числу наименований продуктов, получаемых при разделении смесей (простые, если это число равно 2, и сложные, если оно больше 2).
Для обеспечения эффективного проведения процесса ректификации необходимо, чтобы с верха колонны на нижележащие тарелки непрерывно стекала жидкость (флегма), ас низа колонны вверх поднимались пары. Поэтому часть ректификата после конденсации возвращается в колонну в виде орошения, а часть остатка подогревается в выносном подогревателе и возвращается’в колонну в виде паровой или парожидкостной струи.
При проектировании обвязки верхней части колонн используются схемы полной, неполной и парциальной конденсации паров. В качестве конденсаторов применяют аппараты воздушного охлаждения или кожухотрубчатые холодильники, а для сбора дистиллята — горизонтальные или вертикальные емкости и сепараторы. Для поддержания в колоннах постоянного давления служат схемы регулирования: 1) с установкой регулирующего клапана на основном потоке; 2) изменением угла поворота лопастей вентилятора АВО; 3) изменением числа оборотов электродвигателя вентилятора АВО; 4) изменением расхода оборотной воды в кожухотрубчатый конденсатор-холодильник. При неполной конденсации обычно применяются схемы регулирования давления сбросом неконденсирующихся газов из емкости орошения в топливную сеть.
Для случаев, когда необходимо строго обеспечивать какой-либо параметр качества верхнего продукта колонны, применяются схемы регулирования подачи орошения в зависимости от температуры или собственно параметра качества (вязкости, фракционного состава, плотности и т.
) на какой-либо из тарелок верхней части колонны (так называемой контрольной тарелке). Если подача теплоты в колонну регулируется в зависимости от температуры низа колонны, при обвязке верхней части предусматривается стабилизация подачи орошения.
Если верхний продукт из емкости орошения направляется в резервуары или промежуточную емкость, то регулирование уровня в емкости орошения осуществляется за счет изменения количества откачиваемого продукта. В тех случаях, когда верхний продукт из емкости .орошения подается непосредственно в процесс (печь, колонну и т. д.), используется схема постоянства подачи продукта с коррекцией от уровня в емкости.
Для создания парового потока в нижней части колонн применяются испарители с паровым пространством и без парового пространства, вертикальные и горизонтальные термосифонные испарители, трубчатые печи. Преимущества испарителей с паровым пространством состоят в следующем: они имеют высокий коэффициент испарения (до 0,8), могут применяться в случаях использования для обогрева загрязненных теплоносителей и теплоносителей, имеющих высокое (> 1,6 МПа) давление, представляют собой дополнительную теоретическую ректификационную тарелку. Недостатки этого вида испарителей — высокая стоимость и громоздкость.
Преимуществами термосифонных испарителей являются их низкая стоимость и простота обвязки; недостатки этих аппаратов — необходимость тщательно определять при проектировании гидравлическое сопротивление системы и следить за ним в процессе эксплуатации, невысокий (до 0,3) коэффициент испарения. Горизонтальные термосифонные испарители несколько дороже вертикальных, но могут применяться при использовании загрязненных теплоносителей, а также в тех случаях, когда необходимы большие поверхности теплообмена.
При разработке технологической схемы рекомендуется предусматривать несколько вводов сырья в колонну, поскольку в процессе эксплуатации это позволит учесть колебания состава сырья и компенсировать неточности расчета.
Трубчатая печь.На НПЗи НХЗ с помощью трубчатых печей технологическим потокам сообщается теплота, необходимая для проведения процесса. Трубчатые печи условно разделяются на реакторные, подогревательные и рибойлерные. В реакторных печах (установки термического крекинга, пиролиза) осуществляются процессы превращения углеводородов под влиянием высоких температур. В подогревательных печах сырье нагревается до определенной температуры перед подачей в реактор (установки каталитического крекинга и риформинга, изомеризации, дегидрирования и др.), ректификационную колонну (установки первичной перегонки) или другой аппарат. Рибойлерные печи выполняют функции кипятильника (рибойлера) ректификационных колонн — в эти печи сырье поступает с низа колонн и после нагрева возвращается в виде паров или парожидкостной смеси обратно в колонны.
Рис. 15. Принципиальная схема отбензинивающей колонны:
/ — нефть; // — газ; III — бензин на стабилизацию; IV — полуотбешиненная нефть в атмосферную колонну; G — расход; Н — уровень; Р — давление; / — температура; /кк — температура конца кипения; S — стабилизация; С — постоянство; Пр — пусковое реле; Из — измерение
Обвязка трубчатой печи зависит от ее конструкции. Существуют различные конструкции печей, отличающиеся способом передачи теплоты (радиантные, конвекционные, радиантно-конвекционные), числом топочных камер, способом сжигания топлива (с пламенным и беспламенным горением), числом потоков нагреваемого сырья, формой камеры сгорания (цилиндрические, коробчатые и др.), расположением труб змеевика (горизонтальное или вертикальное).
На рис. 16 приведена схема обвязки трубчатой печи.
Насосы.В нефтеперерабатывающей и нефтехимической промышленности применяются насосы различных типов: лопастные (центробежные и осевые), вихревые и объемные (поршневые, плунжерные, шестеренчатые, винтовые, пластинчатые). В качестве привода в большинстве случаев используется электродвигатель, а в отдельных случаях — паровая турбина.
При проектировании обвязки насосов следует учитывать следующие требования:
1) обвязка насоса основными и вспомогательными трубопроводами должна быть такой, чтобы можно было обеспечить удобство и безопасность обслуживания, возможность демонтажа отключенного насоса;
В колонну
Рис. 16. Принципиальная схема обвязки трубчатой печи:
1, 7— клапаны; 2, 3— регуляторы; 4,5 — термопары; б—диафрагмы; 8 — регулирующий клапан
2) для уменьшения гидравлических потерь во всасывающем трубопроводе его следует прокладывать по возможности более коротким, избегая резких сужений, большого числа поворотов и т. д.; нужно расчетным путем определить минимально допустимую высоту столба жидкости на приеме насоса;
3) для предотвращения поломок насоса в пусковой период необходимо предусматривать временные фильтры во всасывающей линии;
4) в обвязку центробежных насосов необходимо включать обратный клапан, устанавливаемый между нагнетательным патрубком и задвижкой; клапан защищает рабочее колесо насоса от гидравлического удара при остановке насоса; для возможности пуска насоса нужно предусматривать байпасирование обратного клапана;
5) в обвязке поршневых и плунжерных насосов предусматривают предохранительные клапаны между нагревательным патрубком и отключающей задвижкой; сброс от клапана направляют во всасывающий трубопровод;
6)в обвязке вихревых насосов предусматривается байпасная линия (с нагнетания во всасывающую линию), которая используется как в пусковой период, так и при нормальной эксплуатации;
7) к площадкам, где устанавливают насосы, подводят трубопроводы пара, инертного газа, сжатого воздуха для прогрева и продувки насосов и трубопроводов; непосредственно к насосу эти агенты подводят с помощью гибких шлангов или съемных участков, присоединяемых к специальным штуцерам.
При остановке насосов для осмотра или ремонта их следует освободить от продукта. Проектом должен быть предусмотрен сброс дренируемых продуктов в специальные емкости (для легковоспламеняющихся, горючих.и токсичных жидкостей) или в канализацию. Если насосами лерекачиваются.едкие жидкости, необходимо после опорожнения промыть насосы водой или нейтрализующим агентом.
Особое внимание нужно уделять предотвращению выхода насосов из строя из-за отсутствия жидкости во всасывающем трубопроводе. На емкостях и прочих аппаратах, из которых жидкость забирают насосом, устанавливают регуляторы уровня и независимые от них сигнализаторы максимального и минимального уровня и предусматривают автоматическую остановку насоса при достижении минимального уровня.
Наиболее распространенные схемы обвязки насосов приведены на рис. 17.
а бв г
Рис. 17. Схемы обвязки насосов
а — пропариваемые; б — продуваемые инертным газом; в — продуваемые и пропариваемые; г — продуваемые и промываемые; / — пар; // — инертный газ; III — вода; IV — дренаж нефтепродукта; V — сброс в промканализацию
Поскольку средний и капитальный ремонты насосов в холодное время года проводят только в ремонтных цехах и мастерских, в открытых насосных предусматривают обязательное резервирование рабочих насосов. В резервных насосах необходимо поддерживать температуру, близкую к температуре перекачиваемого продукта. С этой целью организуют непрерывную циркуляцию через резервный насос части продукта: если задвижки на всасывающей и нагнетательной линиях резервного насоса частично приоткрыты, а вентиль на байпасе обратного клапана открыт полностью, то часть жидкости будет циркулировать через резервный насос в направлении от линии нагнетания к линии всасывания.
Узел компримирования.На НПЗ и НХЗ используются компрессоры следующих типов: поршневые (односторонние, оппозитные, угловые, вертикальные), роторные (винтовые, пластинчатые), осевые и центробежные (с электродвигателями или паровыми турбинами). В состав узла компримирования входят: сепаратор на приеме компрессора, собственно компрессор, холодильники газа (межступенчатые, если компрессор имеет несколько ступеней сжатия, и концевой), маслоотделители, масляные насосы, холодильники и сборники масла. С основным производством компрессор связан всасывающим и нагнетательным газопроводами и рядом вспомогательных трубопроводов. Кроме того, в узле компримирования имеется ряд внутренних трубопроводов: система водяного охлаждения и смазки цилиндров, продувочные линии и трубопроводы для аварийного перепуска и сброса. Обвязка компрессоров основными и вспомогательными трубопроводами осуществляется в соответствии с рекомендациями заводов-изготовителей.
Узел теплообменного аппарата.Теплообменные аппараты (теплообменники) классифицируют по характеру обменивающихся теплотой сред. Теплообмен может происходить между двумя жидкими средами, между паром (газом) и жидкостью, между двумя газовыми средами. По принципу действия теплообменники подразделяют на аппараты непосредственного смешения и аппараты поверхностного типа. Наиболее часто используемые на НПЗ и НХЗ
аппараты поверхностного типа подразделяют по способу компоновки в них теплообменной поверхности на следующие виды: типа «труба в трубе»; кожухотрубчатые; пластинчатые; аппараты воздушного охлаждения.
Кожухотрубчатые теплообменники, получившие широкое распространение в нефтеперерабатывающей и нефтехимической промышленности, делят по конструктивным особенностям на аппараты: с неподвижными трубными решетками (тип Н), с температурным компенсатором на кожухе (тип К), с плавающей головкой (тип П), аппараты с U-образными трубами (тип У), испарители термосифонные с неподвижными трубными решетками (ИНТ) и с компенсатором на кожухе (ИКТ), аппараты для повышенных температур и давлений (ПК).
Аппараты типа Н применяются, когда разность температур кожуха и труб не превышает 50 °С, а аппараты типа К — в тех случаях, когда эта разность температур выше 50 °С. Чаще всего на НПЗ применяются аппараты с плавающей головкой, которая служит как для компенсации температурных удлинений, так и для облегчения чистки и разборки теплообменников.
В зависимости от назначения кожухотрубчатые теплообменники подразделяют на холодильники (X), теплообменники (Т), конденсаторы (К), испарители (И).
Трубы в кожухотрубчатых. теплообменниках располагаются в решетке по вершинам квадратов и по вершинам треугольников. Теплообменные аппараты с расположением труб по вершинам треугольников при одном и том же диаметре кожуха имеют поверхность теплообмена на 10—15 % выше, однако чистка межтрубного пространства в этом случае затруднена. Для теплообменников, работающих на загрязненных средах, предпочтительнее аппараты с расположением труб по вершинам квадратов.
В аппаратах с U-образными трубами оба конца трубок развальцованы в одной трубной решетке. Эти аппараты применяются при работе на чистых средах.
В теплообменниках, предназначенных для утилизации теплоты отходящих продуктов, более загрязненные и склонные к полимеризации и коксованию продукты направляют в трубное пространство, так как оно более доступно для очистки. В трубное пространство вводят также агрессивные жидкости, поскольку при таком решении из коррозионно-стойких материалов изготавливают не весь аппарат, а лишь часть его (трубный пучок и крышку).
В теплообменных аппаратах, где происходит конденсация паров или испарение жидкости, вещество, меняющее агрегатное состояние, направляется в межтрубное пространство, а среда, которая агрегатного состояния не изменяет, — в трубное. При таком распределении потоков учитывается, что коэффициент теплоотдачи от вещества, изменяющего агрегатное состояние, выше, чем от движущегося, но не меняющего своего состояния. Направляя неконденсирующиеся и неиспаряющиеся среды по трубам теплообменника и увеличивая при этом число ходов в трубном пространстве, повышают скорость движения продукта, а следовательно, и коэффициент теплоотдачи. Необходимо также иметь в виду, что при конденсации и испарении гидравлическое сопротивление теплообменного аппарата обычно стремятся свести к минимуму, а потери напора в межтрубном пространстве меньше, чем в трубном. Это обстоятельство рекомендуется учитывать при проектировании установок, работающих при атмосферном давлении и под вакуумом.
Как правило, в теплообменниках на НПЗ и НХЗ должен быть обеспечен противоток теплообменивающихся сред. В противном случае будет иметь место значительное снижение эффективности теплообмена.
Подвод жидких продуктов следует осуществлять через нижние штуцеры, а вывод — через верхние. Такое решение обеспечивает полное заполнение жидкостью трубного и межтрубного пространств. Если выполнить это требование невозможно, то на отводящих трубопроводах предусматривают гидравлические затворы в виде вертикальных петель («утки»), которые препятствуют опорожнению аппарата; в верхнюю часть петли врезают воздушник с вентилем.
Различные варианты обвязки теплообменников, отличающиеся схемами регулирования температуры, приведены на рис. 18. Для сокращения потерь теплоты в окружающую среду теплообменники изолируют. В некоторых случаях изоляцию предусматривают для того, чтобы предотвратить ожог или обмораживание обслуживающего персонала.
Рис. 18. Схемы обвязки теплообменников для случаев, когда расход охлаждаемого продукта после теплообменника может быть переменным (я) или постоянным (б) и когда охлаждаемый продукт — двухфазная среда (в):
/ — продукт на охлаждение; // — продукт на нагрев; III — парожидкостной поток; IV — откачка, К— ремонтный штуцер; VI — воздушник
Узел реактора.В нефтеперерабатывающей и нефтехимической промышленности применяются реакторы различных типов. Для проведения процессов в гомогенной газовой фазе (термический крекинг, пиролиз) служат реакторы, представляющие собой змеевики трубчатых печей. В гомогенной жидкой фазе протекают процессы гидролиза и некоторые конденсационные процессы, для их проведения используются реакторы смешения и трубчатые реакторы вытеснения.
Широкое распространение на НПЗ и НХЗ получили процессы, которые проводятся в системе газ—твердый катализатор (каталитический риформинг, гидроочистка дистиллятов, синтез углеводородов из СО и Н2, дегидрирование этилбензола и др.).
На рис. 19 показана обвязка реактора гидроочистки масел и парафина. В реакторе имеется стационарный слой катализатора, сырье из печи подается в реактор восходящим потоком. Проектом предусмотрена паровоздушная регенерация катализатора. Обвязка реакторов технологическими трубопроводами в большинстве случаев осуществляется без запорной арматуры.
Рис. 19. Схема обвязки реактора гидроочистки масел:
/— сырье в печь; II — сырье из печи; III —, гидрогенизат; IV — инертный газ; V— водяной пар; VI— воздух; VII— газы регенерации в дымовую трубу; VIII — отбор газа; IX — отбор жидкости; X — охлаждающая вода; XI — дренаж
Характеристики различных насосов
Начнём с выбора насоса. Сейчас на рынке имеется огромное количество различных марок погружных насосов. Выбор насоса начинается с его напорной характеристики.
Подобный график присутствует в каталоге любого производителя. Здесь зафиксирована производительность насоса, а также обеспечиваемый напор. Каждая линия на графике означает конкретный насос. Например, при небольших глубинах погружения первый насос на графике обеспечит расход 20 литров в минуту.
Если требуется поднять воду на высоту 20 метров, то расход составит 15 литров в минуту или 900 литров в час. Если такие значения нас устраивают, выбираем насос с данной характеристикой. Учтите, что данные характеристики достоверны только для дорогих брендовых насосов. Для дешёвых насосов данная характеристика получит значительную погрешность в ту или иную сторону. При расчёте нужного напора учитывается не только глубина погружения насоса в скважину, но и прохождение воды по горизонтальным участкам. Пять метров горизонтального участка приравниваются к одному метру напора.
К выбранной характеристике необходимо добавить 20-процентный запас мощности, чтобы насос не работал на пределе возможностей. Диаметр насоса должен быть меньше трубы скважины, так как вокруг него должна быть свободная вода. Отметим, что у брендовых насосов на практике более качественные комплектующие, и это касается не только лопастей и материала корпуса. Например, у известных брендов используется качественный кабель, который сертифицирован для пищевых целей, а в дешёвых китайских насосах применяется кабель, который со временем разбухает в воде. К тому же не у всех насосов кабель идёт в комплекте. Это имеет значение для насосов большой производительности, погружаемых на большие глубины. При подключении кабеля к такому насосу место соединения придётся тщательно гидроизолировать. Поверх оплётки кабеля обязательно устанавливается термоусадочная муфта. Если в вашей скважине много песка, то при выборе насоса следует отдать предпочтение винтовому типу. В отличие от центробежных насосов они более износостойки.
Первый, более простой вариант обвязки насоса
Рассмотрим основные приёмы обвязки насоса на примере погружного винтового насоса.
В верхней части агрегата предусмотрен выход с внутренней резьбой. Обычно это 1 дюйм или дюйм с четвертью. На выходе также устанавливается пластиковый обратный клапан, который препятствует оттоку воды при выключенном насосе. Данная модель насоса снабжена качественным кабелем длиной 20 м. Его легко узнать по синему цвету и маркировке стандарта VDE.
Данная модель имеет внешнее пускозащитное устройство, к которому подключается кабель. Внутри пускозащитного устройства находится конденсатор и выключатели. Эту коробку монтируют внутри помещения, в которое есть свободный доступ. Схема подключения кабеля имеется в инструкции к насосу. Заметим, что у некоторых насосов пускозащитное устройство выполняется прямо в корпусе, и тогда кабель питания заканчивается вилкой. Для подвешивания насоса в скважине потребуется стальной трос.
Идеальным решением является трос из нержавеющей стали, но стоимость его высока, поэтому мы будем использовать трос в ПВХ оболочке. Нам потребуется защитить конец троса от влаги. Заметим, что грузоподъёмность троса рассчитывается не только по весу насоса, но и по весу воды, которую он подымает наверх.
Нам потребуются пластиковые хомуты, которыми мы будем крепить кабель к водоподъёмной трубе. В качестве водоподъёмной трубы часто используется труба на основе ПНД (полиэтилена низкого давления).
Однако для больших глубин погружения насоса лучше использовать полипропиленовые трубы и фитинги. Для стыковки ПНД трубы с насосом на её конец одевается разборная муфта с подходящим диаметром. Она может быть обычная пластиковая или более крепкая латунная.
В простом варианте обвязки муфта будет вкручиваться прямо в корпус насоса.
Следует позаботиться о качественном уплотнении резьбового соединения. Это может быть фум-лента или сантехнический лён совместно с пастой Unipak. Второй вариант более предпочтителен, особенно при стыковке пластиковых фитингов. Соединение муфты с насосом подтягивается ключом.
При подключении трубы к муфте сначала надевается внешний корпус муфты, затем уплотнительное кольцо. Далее труба обрезается ровно под 90°.
Труба одевается во внутренний корпус муфты и должна быть подана вперёд до упора. Накручиванием внешнего корпуса муфты труба ПНД надёжно фиксируется в этом соединении. В верхней части корпуса насоса обычно предусмотрены два специальных ушка, через которые просовывается стальной трос. Первый вариант фиксации троса на насосе заключается в том, что мы просунем трос в ушки и один раз перекрутим его вовнутрь.
Слегка подтянем эту петлю и выведем конец троса вдоль основного троса. Для надёжной фиксации конца троса будем использовать специальный металлический зажим.
Размещаем внутри зажима основной трос и конец, идущий от насоса. Остаётся установить пластину и поджать её с помощью гайки.
Итак, мы зафиксировали трос по первому варианту. Теперь займёмся герметизацией конца троса. Для этого используем разогретый клей, который нанесём на срез троса. При застывании он создал герметичную пробку.
Для дополнительной защиты троса воспользуемся изолентой.
Вот так мы защитили трос от попадания под оболочку воды. Посмотрим, как правильно зафиксировать кабель питания насоса, чтобы он не болтался в скважине и не пострадал во время опускания. Для этого воспользуемся обычными пластиковыми хомутами. Начинаем фиксировать кабель у начала водоподающей трубы. Не стоит фиксировать на одни стяжки кабель и тросы, так как во время опускания часть из них может оторваться. На первых нескольких метрах стяжки можно устанавливать почаще. В дальнейшем шаг установки может составлять от 1 до 2 метров.
Использованные источники
- septik.guru/vodoprovod/nasosyi/tsentrobezhnyiy/pusk-ostanovka-montazh.html
- helpiks.org/4-71444.html
- transkribator.guru/vodosnabzhenie/vybor-obvyazka-i-ustanovka-nasosa-v-skvazhinu-svoimi-rukami/