Древесный уголь
Различные модификации угля
Накопление древесной массы в болотистой почве приводит к образованию торфа, который является предшественником угля. Формула торфа достаточно сложная, кроме того, для этой разновидности угля не существует конкретного стехиометрического соотношения. Сухой торф состоит из атомов углерода, водорода, кислорода, азота и серы.
Далее торф при длительном воздействии высокой температуры и больших давлений, возникающих в результате протекания геологических процессов, претерпевает ряд следующих угольных модификации:
- Бурый уголь или лигнит.
- Битум.
- Каменный уголь.
- Антрацит.
Конечным продуктом этой цепи преобразований является твердый графит или графитоподобный уголь, формула которого представляет собой чистый углерод C.
Древесина карбонового периода
Около 300 млн лет назад в карбоновый период большая часть суши нашей планеты была покрыта гигантскими папоротниковыми лесами. Постепенно эти леса вымирали, и древесина накапливалась в болотистых почвах, на которых они произрастали. Большое количество воды и грязи создавали препятствия для проникновения кислорода, поэтому мертвая древесина не разлагалась.
В течение длительного времени вновь отмершая древесина покрывала более старые слои, давление и температура которых постепенно увеличивались. Сопутствующие геологические процессы в конечном итоге привели к образованию залежей угля.
Каменный уголь
Эта модификация угля очень богата углеродом, что приводит к высокому коэффициенту теплоотдачи и обуславливает ее использование в энергетической промышленности к качестве основного топлива.
Формула каменного угля состоит из битумных субстанций, дистилляция которых позволяет выделить из него ароматические гидрокарбонаты и вещество, известное под названием кокс, которое широко используется в процессах металлургии. Помимо битумных соединений, в каменном угле много серы. Этот элемент является главным источником загрязнения атмосферы при сжигании угля.
Каменный уголь имеет черный цвет и медленно горит, создавая пламя желтого цвета. В отличие от бурого угля, его теплота сгорания больше и составляет 30-36 МДж/кг.
Формула угля имеет сложный состав и содержит множество соединений углерода, кислорода и водорода, а также азота и серы. Такое разнообразие химических соединений стало началом развития целого направления в химической промышленности – карбохимии.
В настоящее время каменный уголь практически вытеснен природным газом и нефтью, однако два важных его направления использования продолжают существовать:
- основное горючее на тепловых электростанциях;
- источник кокса, получаемого путем бескислородного горения каменного угля в закрытых домнах.
Выяснять химическую формулу угля — тоже самое, что выяснять химическую формулу борща. Уголь (угли, они очень различные и имеют различающийся сотав) — это смесь разных химических веществ, в основном высокомолекулярных полициклических ароматических соединений (аренов) с высоким содержанием углерода. Уголь — это не углерод в чистом виде с кристаллической решеткой, как полагают многие. Наиболее наглядно можно представить уголь как затвердевшую нефть. Ведь нефть также является смесью углеводородов даже с бо́льшим содержанием углерода по отношению к углю, но никто ведь не утверждает, что нефть — это жидкий углерод в чистом виде.
Таким образом, если Вас интересует состав конкретной марки угля, то ищите информацию по аренам (антрацен С14Н10 — одна из самых крупных молукул, состоящая из трех бензольных колец, заметно даже по упрощенной формуле большое количество углерода в ней; нафталин С10Н8 — два бензольных кольца; бензол C6H6 — одно бензольное кольцо; а так же их модификации и прочие варианты).
оме полициклических углеводородов в углях содержатся в разном количестве вода и минеральные примеси. По содержанию углеводорода угли подразделяются на бурые (65—70 [не более 76] % углерода, до 50 % летучих веществ и около 43 % воды), каменные (прядка 80 % улерода, до 32 % летучих веществ и до 12 % воды), антрациты (до 96 % углерода, менее 8 % летучих веществ). Антрацит — этот самый древний, блестящий и плотный уголь, который даже дает название благородным черным оттенкам краски, уже является похожим на то, каким принято считать уголь: чистый углерод, ну слегка загрязненный примесями. Образуются антрациты при повышенных давлении и температуре на бо́льшей глубине, поэтому по составу наиболее близки к графиту, который как раз и является аллотропной модификацией углерода в чистом виде (с кристаллической решеткой) и так же может считаться углем.
ДРЕВЕСНЫЙ УГОЛЬ
Макропористый высокоуглеродистый продукт, получаемый пиролизом древесины без доступа воздуха. Структура и свойства угля определяются температурой пиролиза. Пром. Д. у., получаемый при конечной температуре 450–550 °C, — аморфный высокомол. продукт, включающий алифатич.
ароматич. структуры; состав: 80–92% С, 4,0–4,8% Н, 5–15% О. Д. у. содержит также 1–3% минеральных примесей, гл. обр. карбонатов и оксидов К, Na, Ca, Mg, Si, Al, Fe. Кажущаяся плотность елового угля составляет 0,26, осинового — 0,29, соснового — 0,30, березового — 0,38 г/см3; истинная плотность Д. у. 1,43 г/см3; пористость 75–80%; уд. теплоемкость 0,69 и 1,21 кДж/(кг∙К) соотв. при 24 и 560 °C; теплопроводность 0,058 Вт/(м∙К), теплота сгорания 31500–34000 кДж/кг, уд. электрич. сопротивление 0,8∙108 0,5∙102 Ом.см. Д. у. обладает парамагнитными свойствами, обусловленными присутствием стабилизир. макрорадикалов (парамагнитных центров ПМЦ) — высокореакционноспособных концевых радикалов Rк* и менее реакционноспособных срединных радикалов Rcp*, макс. концентрации которых достигаются соотв. при 550 и 325 °C. При термообработке Д. у. (400–900 °C) без доступа воздуха в результате реакций Rк + RH → RкH + Rcр*, Rср* : Rк + CO + CO2 + H2 + CmHn и R* + R* → R-R происходит уплотнение его структуры, сопровождаемое убылью массы (до 18%) и выделением смеси газов, содержащей (в % по объему) от 12,7 до 0,7 CO, от 8,5 до 4,5 CO2, от 36,5 до 67,5 H2, от 45,0 до 24,0 углеводородов (преим. CH4).
ижаются доля алифатич. структур, водорода (до 1,5%), кислорода (до 4,5%), концентрация ПМЦ (до 1,7∙1018 спин/г), уд. электрич. сопротивление (до 0,5 Ом.см). Повышаются доля ароматич. структур и углерода (до 95%), степень кристалличности, истинная плотность (до 1,97 г/см3). Присутствие макрорадикалов обусловливает высокую реакционная способность Д. у. по отношению к кислороду. Так, свежеприготовл. Д. у. при 30–90 °C за 1 ч хемосорбирует из воздуха 0,5–2% (от массы угля) кислорода; одновременно из угля выделяются низкомол. продукты, гл. обр. вода (0,3–1,5%). На воздухе развивается цепной разветвл. процесс автоокисления Д. у.: Rк* + O2 → RкOO*; RкOO* + RH → RкOOH + Rср*, Rср* + O2 → RсрОО*, RсрОО* + RH → RcpOOH + Rсp*, RcpOOH + RH → RO* + R* + H2O и R* + R* → R-R. В результате может произойти самовозгорание Д. у., если к.-л. из параметров процесса (концентрация ПМЦ, температура, концентрация O2 и геом. размеры массы угля) превысит некоторую критич. величину. Чтобы избежать этого, Д. у. стабилизируют, выдерживая слой угля высотой не более 60 мм при 50–80 °C не менее 10 мин, т.
в условиях, когда ни один из параметров не превышает критич. величину. Д. у. получают пиролизом древесины в стальных вертикальных непрерывно действующих ретортах производительностью 100–2200 кг/ч, а также в разл. печах. Выход Д. у. в пересчете на нелетучий углерод составляет 21–25% от безводной древесины. В СССР Д. у. получают из древесины твердолиств. пород, березы или из смеси древесины твердолиств. и мягколиств. пород. Он должен содержать не более 3% золы, не более 6% влаги, не более 7% частиц размером менее 12 мм. Массовая доля нелетучего углерода в Д. у. должна составлять 77–90%. Перспективно получение Д. у. из измельченной древесины с катализатором, ускоряющим процесс в неск. раз и повышающим выход угля на 30–40%. Широко применяется крупнокусковый (более 12 мм) Д. у. из твердолиств. пород древесины, имеющий наиб. высокую мех. прочность. Он используется в качестве сырья для получения активного угля, CS2, окисленного Д. у., карбюризатора, в качестве восстановителя в производстве кристаллич. Si, черных и цветных металлов, проволоки и др. Мелкий Д. у. может служить подкормкой животным, его используют также для получения бытового топлива — древесноугольных брикетов. Окисленный Д. у. (Д. о. у.) получают окислением Д. у. воздухом в условиях, когда ни один из параметров окисления не превышает критич.
личину. На поверхности Д. о. у. (углеродного ионообменника) содержатся функц. группы — карбоксильные, гидроксильные, карбонильные, хинонные, пероксидные и др. Статич. ионообменная емкость по NaOH составляет 1,0–8,0 м2.экв/г. Д. о. у. содержит значительно больше кислорода (18–40%), чем Д. у., но меньше углерода (55–75%) и водорода (1,5–4,0%). Зольность его такая же, как у Д. у. (до 3%), но после обеззоливания минер. кислотой она не превышает 0,4%. Кажущаяся плотность Д. о. у. 0,45–0,52 г/см3, истинная — 1,5–1,9 г/см3, пористость 75–80%, уд. электрич. сопротивление 2,1∙108-1,5 3 1011 Ом.см. В зависимости от характера поверхностных функц. групп, их количеств. соотношения и формы (водородной или катионзамещенной) Д. о. у. проявляет комплексо-образующие, ионообменные, электронообменные или каталитич. свойства. В сравнении с селективными ионообменными смолами они обладают рядом преимуществ: термостойки (до 300 °C), исключительно радиационно- и химстойки (не растворяются, не набухают и не слипаются во всех средах, в т. ч. в щелочах), нетоксичны. Д. о. у. используют для получения особо чистых веществ, напр., при глубокой очистке реактивов от примесей катионов переходных металлов, щел.-зем. металлов, как катализатор переэтерификации в производстве жиров, инверсии сахаров и др. Древесноугольный карбюризатор — твердый гранулированный продукт, состоящий гл.
р. из дробленого Д. у., карбонатов щелочных (в осн. К и Na) или щел.-зем. (гл. обр. Ba и Са) металлов (10–20%). Его используют для цементации стальных изделий путем насыщения поверхностного слоя стали углеродом. Введение в карбюризатор разл. добавок, напр., наводороженного железа, мочевины, повышает скорость цементации в 2 раза. Для удержания добавок на частицах угля часто используют связующее (крахмал, поливинилацетатную эмульсию, мазут, мелассу и др.). Мировое производство Д. у. более 5 млн. т/год, в т. ч. в СССР ок. 200 тыс. т/год.
Использованные источники
- fb.ru/article/386227/himicheskaya-formula-uglya-protsess-ego-obrazovaniya-i-ispolzovanie-v-promyishlennosti
- vorum.ru/questions/10185
- gufo.me/dict/chemistry_encyclopedia/древесный_уголь