Принцип работы ракеты


Полеты в космос – без сомнения, одно из самых потрясающих достижений нашей цивилизации. Знаменитое гагаринское «поехали!» и первый шаг Армстронга по лунной поверхности – исторические вехи на пути к далеким планетам и другим звёздным системам. Ничего бы этого не было без ракетного двигателя, который позволил нам преодолеть силу гравитации планеты и дал возможность выйти на околоземную орбиту.

Устройство ракетного двигателя, с одной стороны, настолько незамысловато, что вы можете построить его дома самостоятельно, потратив на это буквально три копейки. Но, с другой стороны, конструкция космических и военных ракет до такой степени сложна, что только несколько государств в мире имеют технологии их изготовления.

Ракетный двигатель (РД) – это разновидность реактивного двигателя, рабочее тело и источник энергии которого находится непосредственно на борту летательного аппарата. Это его главное отличие от воздушно-реактивных двигателей. Таким образом, РД не зависит от кислорода атмосферы и поэтому может использоваться для полетов в космическом (безвоздушном) пространстве.


Россия является одним из мировых лидеров в области ракетного двигателестроения. Задел, доставшийся нам от Советского Союза, впечатляет. Отечественная промышленность способна производить лучшие ракетные двигатели самого разного назначения. Доказательством этому является ракетный двигатель РД-180, который используется на американских «Атласах». Поставки в США начались еще в 2000 году и продолжаются до сих пор. Существуют и другие интересные наработки, причем речь идет не только о мощных двигателях для космических или баллистических ракет, но и РД для различных оружейных систем.

В настоящее время наиболее распространены так называемые химические ракетные двигатели, в которых удельный импульс образуется за счет сгорания топлива. Кроме них, существуют также ядерные и электрические двигатели. В этой статье мы расскажем о том, как работает ракетный двигатель, поведаем о его преимуществах и недостатках, а также представим современную классификацию РД.

Немного физики или как это работает

Разные типы ракетных двигателей имеют существенные отличия в своей конструкции, но работа любого из них базируется на знаменитом третьем законе Ньютона, который гласит, что «каждому действию есть равное противодействие». РД выбрасывает струю рабочего тела в одном направлении, а сам, в соответствии с ньютоновским постулатом, движется в противоположную. Продукты сгорания топлива выходят через сопло, образуя тягу – это основы теории ракетных двигателей.


Если вы, стоя в лодке, отбросите от кормы камень, то ваше судно немного уплывет вперед. Это и есть наглядная модель функционирования всех ракетных двигателей. Еще одним примером может быть работа пожарного шланга, из которого под большим давлением выбрасывается вода. Для его удержания необходимо приложить определенные усилия. Если поставить пожарного на скейборд и дать ему в руки шланг, то он будет двигаться с довольно высокой скоростью.

Главной характеристикой, определяющей эффективность подобных систем, является тяга (сила тяги). Она образуется в результате превращения исходной энергии в кинетическую реактивной струи рабочего тела. В метрической системе тяга ракетного двигателя измеряется в ньютонах, а американцы считают ее в фунтах.

Еще одним важнейшим параметром ракетных двигателей является удельный импульс. Это отношение силы тяги (или количества движения) к расходу топлива в единицу времени. Данный параметр рассматривается в качестве степени совершенства того или иного РД, и является мерой его экономичности.

Химические двигатели работают за счет экзотермической реакции сгорания горючего и окислителя. Этот тип РД имеет две составные части:

  • Сопло, в котором тепловая энергия преобразуется в кинетическую;
  • Камеру сгорания, где происходит процесс горения, то есть превращения химической энергии топлива в тепловую.

Из истории данного вопроса

Ракетный двигатель – один из старейших видов двигателя, известных человечеству. Мы не можем точно ответить на вопрос, когда именно была изготовлена первая ракета. Есть предположение, что это сделали еще древние греки (деревянный голубь Архита Тарентского), но большинство историков считает родиной данного изобретения Китай. Это произошло примерно в III столетии нашей эры, вскоре после открытия пороха. Первоначально ракеты использовали для фейерверков и других развлечений. Пороховой ракетный двигатель был достаточно эффективен и прост в изготовлении.

Считается, что эти технологии попали в Европу где-то в XIII веке, их изучением занимался английский естествоиспытатель Роджер Бэкон.

Первая боевая ракета была разработана в 1556 году Конрадом Хаасом, который придумывал различные виды вооружений для императора Фердинанда I. Этого изобретателя можно назвать первым создателем теории ракетных двигателей, также он является автором идеи многоступенчатой ракеты – в трудах Хааса подробно описан механизм работы летательного аппарата, состоящего из двух ракет. Изыскания продолжил поляк Казимир Семенович, живший в середине XVII века. Однако все эти проекты так и остались на бумаге.

Практическое использование ракет началось только в XIX столетии. В 1805 году британский офицер Уильям Конгрив продемонстрировал пороховые ракеты, которые имели небывалую по тем временам мощность. Презентация произвела должное впечатление, и ракеты Конгрива были приняты на вооружение английской армии. Их главным преимуществом, по сравнению со ствольной артиллерией, была высокая мобильность и относительно небольшая стоимость, а основным недостатком – кучность огня, которая оставляла желать лучшего. К концу XIX века широкое распространение получили нарезные орудия, стрелявшие очень точно, поэтому ракеты были сняты с вооружения.


В России данным вопросом занимался генерал Засядко. Он не только усовершенствовал ракеты Конгрива, но и первым предложил использовать их для полета в космос. В 1881 году российский изобретатель Кибальчич создал собственную теорию ракетных двигателей.

Огромный вклад в развитие этого направления техники внес еще один наш соотечественник – Константин Циолковский. Среди его идей жидкостный ракетный двигатель (ЖРД), работающий на смеси кислорода и водорода.

В начале прошлого столетия энтузиасты во многих странах мира занимались созданием жидкостного РД, первым добился успеха американский изобретатель Роберт Годдард. Его ракета, работающая на смеси бензина и жидкого кислорода, успешно стартовала в 1926 году.

Вторая мировая война стала периодом возвращения ракетного оружия. В 1941 году на вооружение Красной армии была принята установка залпового огня БМ-13 – знаменитая «Катюша», а в 1943 – немцы начали использование баллистической Фау-2 с жидкостным ракетным двигателем. Она была разработана под руководством  Вернера фон Брауна, который позже возглавил американскую космическую программу. Германией также было освоено производство КР Фау-1 с прямоточными реактивным мотором.


После окончания войны между СССР и США началась настоящая «ракетная» гонка. Советскую программу возглавил Сергей Королев – выдающийся конструктор ракетных двигателей, именно под его руководством была создана отечественная МБР Р-7, а позже запущен первый искусственный спутник и осуществлен полет человека в космос.

В разные годы предпринимались попытки создания ракетных двигателей, работающих за счет энергии ядерного распада (синтеза), но до практического применения подобных силовых установок дело так и не дошло. В 70-е годы в СССР и США началось использование электрических ракетных двигателей. Сегодня они применяются для коррекции орбит и курса космических аппаратов. В 70-е и 80-е годы были эксперименты с плазменными РД, считается, что они имеют хороший потенциал. Большие надежды связывают с ионными ракетными двигателями, использование которых теоретически может значительно ускорить космические аппараты.

Однако пока почти все эти технологии находятся в зачаточном состоянии, и основным транспортным средством покорителей космоса остается старая добрая «химическая» ракета. В настоящее время за титул «самый мощный ракетный двигатель в мире» соревнуется американский F-1, участвовавший в лунном проекте, и советский РД-170/171, который использовался в программе «Энергия-Буран».

Какими они бывают?

Классификация ракетных двигателей построена на способе получения энергии для отбрасывания рабочего тела. Исходя из этого параметра, РД бывают:


  • химические;
  • ядерные (термоядерные);
  • электрические (электроракетные);
  • газовые.

Каждый из вышеперечисленных типов может подразделяться на более мелкие категории. Химические двигатели (ХРД), например, в зависимости от агрегатного состояния топлива бывают твердотопливными и жидкотопливными. Существует и химический гибридный ракетный двигатель (ГРД). К ХРД также относится клиновоздушный ракетный двигатель, который имеет другую форму и конструкцию сопла. Различают газофазные и твердофазные ядерные РД. Есть несколько типов электрических силовых установок.

Химический РД: преимущества и недостатки

Этот тип ракетных двигателей является наиболее распространенным и хорошо освоенным. Можно сказать, что именно ХРД подарил человечеству космос. Он работает за счет экзотермической химической реакции, причем и горючее и окислитель находится на борту летательного аппарата и вместе образуют топливо. Оно одновременно служит и источниками энергии, и основой для рабочего тела.

ХРД обладают сравнительно небольшим удельным импульсом (если сравнивать их с электрическими), но позволяют развивать большую тягу. Это особенно важно для стартовых ракетных двигателей и при выведении полезной нагрузки на орбиту.


В жидкостных двигателях окислитель и горючее находится в жидкой фазе. С помощью топливной системы они подаются в камеру, где сгорают и, истекая через сопло.

В твердотопливном РД смесь горючего и окислителя размещено непосредственно в камере сгорания. Как правило, топливо имеет форму стержня с центральным каналом. Процесс горения идет от центра к периферии, газы, выходя через сопло, образуют тягу. Подобные двигатели имеют ряд преимуществ: они сравнительно просты, дешевы, безопасны в плане экологии и надежны.

К недостаткам твердотопливного химического двигателя можно отнести ограниченность времени его работы, небольшой показатель удельного импульса (по сравнению с жидкостными РД) и невозможность перезапуска – после старта его уже нельзя остановить. Вышеперечисленные особенности определяют сферу использования твердотопливных РД – это баллистические и метеорологические ракеты, ЗУР, НАР, реактивные снаряды для систем залпового огня. Твердое топливо также используют в стартовых ракетных двигателях.

Жидкостные РД имеют более высокий показатель удельного импульса, их можно останавливать и перезапускать вновь, а тягу – регулировать. Кроме того, по сравнению с твердотопливными, они имеют меньший вес и более компактны. Но есть и ложка дегтя: жидкостные двигатели отличаются сложной конструкцией и высокой стоимостью, поэтому основная область их применения – это космонавтика.


В качестве компонентов топлива для жидкостных РД используют различные комбинации. Например, кислород + водород или азотный тетраоксид + несимметричный диметилгидразин. В последние годы весьма популярны ракеты, использующие кислород и керосин. Топливо может состоять из пяти и более частей. Весьма многообещающими считаются метановые ракетные двигатели, их созданием сегодня занимаются сразу в нескольких странах мира. Из других интересных разработок в этой области можно отметить так называемый детонационный ракетный двигатель, топливо которого не горит, а взрывается.

Работы над улучшением ХРД не прекращаются, но, вероятно, предел его возможностей уже достигнут – конструкторы «выжали» из химического горючего все, что могли. Серьезной проблемой ХРД является огромная масса топлива, которую должен поднимать летательный аппарат. И это дико неэффективно. Схема с отделяемыми ступенями несколько улучшила ситуацию, но явно не стала панацеей.

Следует отметить, что химические ракетные двигатели используются не только для покорения космоса. Они нашли свое применение и на Земле, правда, в основном только в военном деле. Все боевые ракеты, начиная с маленьких авиационных или противотанковых, и заканчивая огромными МБР, оснащаются ХРД. В подавляющем большинстве они имеют более простые и надежные твердотопливные двигатели. Примером мирного использования ХРД являются геофизические и метеорологические ракеты.


На атомном корабле к звездам!

Жидкостной ракетный двигатель подарил человеку космос и помог добраться до ближайших планет. Скорость истечения реактивной струи ракеты на жидком топливе не превышает 4,5-5 м/с, что делает ее малопригодной для далеких миссий – для этого необходимы десятки метров в секунду. Космические аппараты с ХРД еще способны доставить человека к ближайшим планетам – типа Марса или Венеры – но для путешествий к далеким объектам Солнечной системы нам придется придумать что-то новое. Одним из выходов из этого тупика видится использование энергии, скрытой в атомном ядре.

Ядерный ракетный двигатель (ЯРД) – это тип силовой установки, в которой рабочее тело нагревается за счет энергии ядерного деления или синтеза. В зависимости от состояния топлива он может быть твердо-, жидко- или газофазным. В качестве рабочего тела обычно используется водород или аммиак. Тяга ЯРД вполне сравнима с химическими двигателями, при этом они имеют высокий удельный импульс. Но есть одна проблема – загрязнение атмосферы радиоактивным выхлопом.

История ядерных двигателей началась еще в середине 50-х годов, их практическим созданием занимались две страны в мире – США и Советский Союз. Уже в 1958 году американцы поставили задачу создания ЯРД для полетов на Луну и Марс (программа NERVA). Примерно в это же время схожими вопросами занимались и советские конструкторы. К концу 70-х годов был создан ядерный ракетный двигатель РД-0410, но он так и не прошел полноценных испытаний.


В настоящее время наиболее перспективно выглядят газофазные ядерные двигатели, в которых топливо находится в газообразном состоянии в специальной герметичной колбе. Это исключает его контакт с рабочим телом и значительно уменьшает вероятность радиоактивного заражения. Несмотря на то что основные технические проблемы создания ЯРД уже давно решены, до сих пор ни один из них не нашел своего применения на практике. Хотя, именно этот ЯРД выглядит наиболее перспективным с точки зрения реального применения.

Электрические ракетные двигатели, их особенности, преимущества и недостатки

Еще одним возможным конкурентом, у которого есть шансы заменить ХРД, является электрический ракетный двигатель (ЭРД), использующий для разгона рабочего тела электрическую энергию.

Идея создания подобной силовой установки родилась еще в начале XX века, в 30-е годы ее на практике реализовал советский ученый Глушко. Активные работы над ЭРД начались в США и СССР в 60-е годы, а в 70-е – первые ракетные двигатели подобного типа уже были установлены на космических аппаратах.

Существует несколько типов ЭРД:

  • электротермический;
  • электростатический;
  • электромагнитный;
  • плазменный.

Электрические ракетные двигатели имеют высокий показатель удельного импульса, что позволяет им весьма экономно расходовать рабочее тело, но при этом они нуждаются в большом количестве энергии, что является серьезной проблемой. Пока единственным реальным ее источником для ЭРД являются солнечные батареи. Они имеют малую тягу, что не позволяет использовать их в пределах земной атмосферы – стартовый ракетный двигатель из ЭРД точно не получится. В настоящее время они используются в качестве маневровых – для коррекции орбит космических аппаратов.

Источник: MilitaryArms.ru

В конце октября издательство Corpus при поддержке Политехнического музея и «Книжных проектов Дмитрия Зимина» выпустит книгу физика Луиса Блумфилда «Как все работает. Законы физики в нашей жизни». Профессор Виргинского университета просто и ясно объясняет, почему горят лампочки и катится велосипед, как правильно поливать сад и как работают кухонные плиты. В начале декабря Луис Блумфилд приедет в Москву на книжную ярмарку Non/fiction, чтобы представить свою книгу. С разрешения издательства «Медуза» публикует фрагмент издания, объясняющий, почему летит ракета.

Несмотря на всю сложность конструкции современных космических кораблей, ракета — один из самых простых летательных аппаратов. В основе ее устройства лежит принцип, согласно которому всякое действие рождает противодействие. Ракета летит, выбрасывая определенное вещество из своей хвостовой части. Несмотря на всю эту простоту, ракеты разрабатывались и совершенствовались в течение более чем семисот лет. Ракеты используются в исследованиях космоса, в вооружениях, в спасательных операциях и развлечениях.

Реактивный двигатель

Среди самых впечатляющих свойств ракеты — ее способность обеспечивать собственное движение даже в полной пустоте космического пространства, а также достигать за счет этой реактивной силы потрясающе высоких скоростей. Каким-то образом ракета толкает сама себя без помощи внешних сил, и создается впечатление, будто этот толчок может сообщить ей сколь угодно большое ускорение.

Разумеется, на самом деле ракета не может сама себя сдвинуть с места, так же как и вы не можете приподнять себя над землей за шнурки собственных ботинок, и ускорение ее имеет предел. В действительности ракета получает движущую реактивную силу, отталкиваясь от собственного топлива, а когда запас топлива иссякает, она перестает набирать скорость. Чтобы понять, как ракета извлекает реактивную силу из запаса топлива, давайте посмотрим, как работает третий закон Ньютона (тот самый, что описывает действие и противодействие) применительно к ракетам.

Представьте себе, что вы сидите на льду посреди замерзшего пруда и ваши скорость и импульс равны нулю. Солнышко пригревает, и влажный лед очень скользкий. Похоже, как ни старайся, вам не удастся сдвинуться с места. Как же вам добраться до берега? 

Поскольку вы обладаете инерцией, то единственная надежда сдвинуться — это получить какой-нибудь толчок извне. Конечно, можно заказать по телефону пиццу, а когда ее доставят, оттолкнуться от разносчика. А можно вспомнить физические принципы, которые мы обсуждали на с. 68: снимайте кроссовку и бросайте ее изо всех сил в сторону восточного берега пруда. Бросая кроссовку, вы своей рукой прикладываете к ней силу. Кроссовка получает ускорение и летит надо льдом.

А что происходит с вами? Вы перемещаетесь к западному берегу! Вы двигаетесь, потому что, когда вы толкнули кроссовку в восточном направлении, она с такой же силой толкнула вас к западу. При этом вы передали импульс кроссовке — и она тоже передала вам импульс, но направленный в противоположную сторону. Импульс не может возникнуть из ниоткуда и исчезнуть в никуда, он может быть лишь перераспределен. Даже после того, как вы бросили кроссовку, ваш суммарный импульс равен нулю. Величина импульса кроссовки равна величине вашего противоположно направленного импульса.

Естественно, ваша масса намного больше массы кроссовки, поэтому вы двигаетесь гораздо медленнее, чем он. Импульс равен произведению массы на скорость, и чем больше масса тела, тем меньшая скорость ему нужна для получения такого же импульса. Так или иначе вы добились, чего хотели, — вы медленно скользите к западному берегу.

Ваша конечная скорость имеет предел, потому что вам удалось сообщить кроссовке лишь небольшой импульс, и вы также получили от нее небольшой импульс, направленный в другую сторону. Если бы вам удалось метнуть ее с более высокой скоростью или запустить в воздух целый ящик с обувью, ваш импульс был бы куда больше и вы начали бы скользить быстрее.

Однако швыряться кроссовками не слишком эффективно. Куда эффективнее было бы выпустить в сторону восточного берега быстрый поток газа. Даже при комнатной температуре скорость молекул в воздухе равна примерно 1800 км/ч. Если нагреть газ до 2800 ̊С — именно такова температура газа в жидкостном ракетном двигателе, — его молекулы будут двигаться втрое быстрее. Бросив что-либо с такой скоростью, вы получите изрядный по величине импульс, направленный в противоположную броску сторону.

Этот процесс и реализуется в классическом ракетном двигателе (см. рис.). В результате химической реакции топливо превращается в сильно разогретый газ реактивной струи. Энергия, которая поначалу существовала в виде потенциальной энергии химического топлива, в разогретом и воспламенившемся газе превращается в тепловую (это главным образом кинетическая энергия хаотического движения крошечных молекул). Сопло ракетного двигателя направляет неупорядоченные перемещения молекул в одну сторону, и двигателю сообщается реактивная сила, направленная в противоположную сторону.

Если вам когда-нибудь доводилось наблюдать старт большой ракеты, вы, вероятно, заметили колоколообразные сопла, через которые выбрасываются газы. Каждое сопло направляет реактивную газовую струю назад и в результате позволяет ракете извлечь максимально возможный направленный вперед импульс и набрать максимально возможную скорость. Как мы увидим в главе 6, сопло позволяет газам преобразовать различные виды внутренней энергии в кинетическую энергию; сопло идеально подходит для того, чтобы направить поток и разогнать молекулы. Оптимальная форма сопла ракетного двигателя — это форма песочных часов. Такое сопло называется соплом Лаваля в честь его изобретателя — шведа Карла Густава де Лаваля.

Для более полного понимания того, почему для сопла ракетного двигателя требуется столь сложная форма, необходимо изучить физику газовых потоков, скорость которых близка к скорости звука или превышает ее. Позже мы поговорим об этом подробнее, а пока нам достаточно будет кратко коснуться данной темы. 

Внутри ракеты, у входа в сопло Лаваля, горячий газ сильно сжат и находится под огромным давлением. Подобно газу из аэрозольного баллончика, раскаленный газ с ускорением вылетает из сопла в направлении области более низкого давления. Сужение сопла способствует росту ускорения до известного предела. Самую узкую часть сопла газ проходит со скоростью звука, и его свойства начинают кардинально меняться. Затем сопло расширяется, чтобы разогнать сверхзвуковую реактивную газовую струю еще сильнее. Здесь, в расширяющейся части колокола, исходный небольшой объем сильно сжатого газа увеличивается, и раскаленный газ уже подготовлен для того, чтобы выйти из сопла в окружающее пространство.

Оптимальный (то есть обеспечивающий максимальную реактивную силу) диаметр внешней половины сопла Лаваля зависит от внешних условий. На небольшой высоте над уровнем моря струя газа выходит в воздух, находящийся под нормальным атмосферным давлением, и в этом случае лучше всего подходит относительно узкое сопло. В стратосфере и в космосе газы выходят в разреженную среду или в вакуум, поэтому требуется более широкое сопло. Как правило, конструкторы находят некое компромиссное решение, чтобы сопло подходило и для тех, и для других условий.

К моменту выхода из сопла исходная энергия газа почти полностью переходит в кинетическую, а скорость газового потока направлена прочь от сопла. Однако поскольку газ продолжает гореть даже после выброса из сопла, его кинетическая энергия и скорость растут до фантастических величин. Благодаря конструкции сопла Лаваля скорость истечения реактивной газовой струи — то есть скорость направленного назад потока газов, выходящего из двигателя ракеты, — достигает значений от 10 000 до 16 000 км/ч.

Ракета выбрасывает реактивную струю назад и сообщает ей направленный назад импульс. Реактивная газовая струя посылает ракету вперед и тем самым замыкает процесс передачи импульса. Все, что требуется для получения реактивной движущей силы, — это собственно выброс газов; ракете не нужно отталкиваться от какого-либо другого тела, и она отлично летит даже в полной пустоте. «Оттолкнувшись» с достаточной силой от собственного выброса, ракета не только компенсирует собственный вес, но и поднимается с ускорением. В момент старта космический челнок вместе с топливным баком весит около 20 000 000 Н, а реактивная сила равна примерно 30 000 000 Н. Это означает, что шаттл может двигаться вверх с ускорением вдвое меньшим, чем ускорение свободного падения! По мере того как корабль сжигает свое топливо и его вес и масса уменьшаются, он устремляется ввысь все быстрее.

Распространенное заблуждение: действие и противодействие в ракетах

Заблуждение: Чтобы начать движение, ракета должна оказать противодействие некоему постороннему телу.

На самом деле: Поскольку движение ракеты предполагает действие двух равных и противоположно направленных сил — действия и противодействия, ракета выталкивает назад реактивную газовую струю (действие), а реактивная струя толкает ракету (противодействие). Если струя газов и ударяется во что-либо после выхода из сопла, это не имеет отношения к реактивному движению ракеты.

Стабилизация ракеты

Пока ракета рассекает слои атмосферы, ей лучше всего лететь носом вперед. Даже птица, которая вдруг полетит хвостом вперед, будет выглядеть довольно глупо, но потерявшая стабилизацию ракета к тому же чрезвычайно опасна. Чтобы сохранить правильную ориентацию, ракета должна обладать динамической вращательной устойчивостью. Немало ракет было дистанционно уничтожено вскоре после запуска, поскольку они потеряли динамическую устойчивость и стали беспорядочно кувыркаться в воздухе.

Ракета динамически устойчива, если суммарный момент приложенных к ней сил относительно ее центра масс равен нулю при ее ориентации носом вперед. При любом отклонении от этого положения она должна возвращаться к нему. Любые моменты сил должны либо вновь и вновь разворачивать ракету носом вперед, либо они должны быть пренебрежимо малы.

Ракетный конструктор обязан принять во внимание две причины возникновения моментов сил. Во-первых, силу тяги двигателя. Расположенный в задней части ракеты двигатель толкает ракету вперед, и потенциально это может иметь неприятные последствия. В конце концов, даже обычную тележку легче направить в нужную сторону, если тянуть ее спереди, а не толкать сзади. Для того чтобы ракета постоянно была ориентирована носом вперед, двигатель должен создавать силу тяги, направленную точно к центру масс, — тогда на ракету не действует момент силы. Если один из двигателей не совсем точно ориентирован, его тяга может создать момент силы, который начнет закручивать взлетающую ракету. Моменты сил, возникающие из-за смещения двигателя, — одна из самых распространенных причин крушения современных ракет. Сбой в работе самого двигателя или его системы управления может привести к тому, что ракета выйдет из-под контроля.

Во-вторых, на ракету, пока она находится в атмосфере, могут действовать моменты аэродинамических сил. Аэродинамику мы будем изучать в 6-й главе, а пока достаточно сказать, что обтекающий ракету воздушный поток помогает ракете лететь носом вперед при условии, что сопротивление воздуха у ее хвостовой части больше, чем спереди. В этом случае аэродинамические силы приложены к хвосту ракеты позади центра масс и направляют ее носом вперед.

Устойчивость простейшей ракеты обеспечивается исключительно аэродинамикой. Хвостовое оперение ракеты способствует формированию аэродинамических сил, которые удерживают ее хвост сзади. Сопла двигателей тоже тщательно выровнены так, чтобы реактивная газовая струя не создавала момента силы относительно центра масс ракеты. Такая ракета летит по прямой, но ею трудно управлять.

У современных высокотехнологичных ракет хвостового оперения нет, они стабилизируются за счет реактивных сил. Такие ракеты умеют контролировать собственную ориентацию и поворачивать сопла двигателей таким образом, чтобы скорректировать траекторию. Кроме того, на корпусе таких ракет имеются дополнительные небольшие рулевые двигатели, которые создают моменты сил и поддерживают правильную ориентацию ракеты. Большинство современных ракет-носителей вообще не имеют стабилизаторов. Их устойчивость и маневренность полностью обеспечивают находящиеся под постоянным контролем двигатели.

То, что коррекция траектории полета осуществляется исключительно с помощью реактивной газовой струи, становится принципиально важным, когда космический аппарат покидает атмосферу Земли. В безвоздушном пространстве, где не возникают моменты аэродинамических сил, полет корабля направляется лишь специальными рулевыми двигателями, которые короткими выбросами реактивных газовых струй поворачивают корабль в нужном направлении. Крылья и хвостовое оперение нужны космическому челноку лишь при возвращении на Землю, когда он начинает планировать в атмосфере. На орбите ни крылья, ни хвост не работают, потому что там нет воздуха, от которого они могли бы оттолкнуться.

Однако любой уважающий себя командир космического экипажа хочет, чтобы его корабль выглядел как можно более элегантно — уж не хуже, чем звездолеты, которые нам показывают в блокбастерах. Космические летательные аппараты в кино почти всегда украшены совершенно бесполезными в космическом пространстве хвостовым оперением и крыльями. И когда вы в очередной раз увидите на экране межгалактический крейсер с элегантными крыльями и хвостом, не забывайте, что ничуть не менее эффективным будет звездолет, похожий, скажем, на гигантский и неуклюжий школьный автобус.

Перевод с английского языка Е. Валкиной и Ю. Плискиной

Источник: meduza.io

История[править | править код]

Один из первых эскизов многоступенчатой ракеты был представлен в 1556 году в книге военного техника Конрада Хааса. В XVII веке рисунок с изображением ракет был опубликован в труде военного инженера и генерала от артиллерии Казимира Семеновича, «Artis Magnae Artilleriae pars prima» (лат.  «Великое искусство артиллерии часть первая»), напечатанном в 1650 году в Амстердаме, Нидерланды. На нём — трехступенчатая ракета, в которой третья ступень вложена во вторую, а обе они вместе — в первую ступень. В головной части помещался состав для фейерверка. Ракеты были начинены твёрдым топливом — порохом. Это изобретение интересно тем, что оно более трёхсот лет назад предвосхитило направление, по которому пошла современная ракетная техника.

Впервые идея использования многоступенчатых ракет была выдвинута американским инженером Робертом Годдардом в 1914 году, и был получен патент на изобретение. В 1929 г. К. Э. Циолковский выпустил в свет свою новую книгу под заглавием «Космические ракетные поезда». Этим термином К. Циолковский назвал составные ракеты или, вернее, агрегат ракет, делающих разбег по земле, потом в воздухе и, наконец, в космическом пространстве. Поезд, составленный, например, из 5 ракет, ведётся сначала первой — головной ракетой; по использовании её горючего, она отцепляется и сбрасывается на землю. Далее, таким же образом, начинает работать вторая, затем третья, четвёртая и, наконец, пятая, скорость которой будет к тому времени достаточно велика, чтобы унестись в межпланетное пространство. Последовательность работы с головной ракеты вызвана стремлением заставить материалы ракет работать не на сжатие, а на растяжение, что позволит облегчить конструкцию. По Циолковскому, длина каждой ракеты — 30 метров. Диаметры — 3 метра. Газы из сопел вырываются косвенно к оси ракет, чтобы не давить на следующие ракеты. Длина разбега по земле — несколько сот километров.

Несмотря на то, что в технических деталях ракетостроение пошло во многом по другому пути (современные ракеты, например, не «разбегаются» по земле, а взлетают вертикально, и порядок работы ступеней современной ракеты — обратный, по отношению к тому, о котором говорил Циолковский), сама идея многоступенчатой ракеты и сегодня остаётся актуальной.

В 1935 году Циолковский написал работу «Наибольшая скорость ракеты», в которой утверждал, что при уровне технологии того времени достичь первой космической скорости (на Земле) можно только с помощью многоступенчатой ракеты. Это утверждение сохраняет свою справедливость и сегодня: все современные носители космических аппаратов — многоступенчатые. Первым рукотворным объектом, пересекшим линию Кармана и вышедшим в космос, была одноступенчатая немецкая ракета Фау-2. Высота полётов достигала 188 км.

Принцип действия многоступенчатой ракеты[править | править код]

Ракета является весьма «затратным» транспортным средством. Ракеты-носители космических аппаратов «транспортируют», главным образом, топливо, необходимое для работы их двигателей, и собственную конструкцию, состоящую в основном из топливных контейнеров и двигательной установки. На долю полезной нагрузки приходится лишь малая часть (1,5-2,0 %) стартовой массы ракеты.

Составная ракета позволяет более рационально использовать ресурсы за счёт того, что в полёте ступень, выработавшая своё топливо, отделяется, и остальное топливо ракеты не тратится на ускорение конструкции отработавшей ступени, ставшей ненужной для продолжения полёта. Пример расчёта, подтверждающего эти соображения, приводится в статье «Формула Циолковского».

Конструктивно многоступенчатые ракеты выполняются c поперечным или продольным разделением ступеней.
При поперечном разделении ступени размещаются одна над другой и работают последовательно друг за другом, включаясь только после отделения предыдущей ступени. Такая схема даёт возможность создавать системы, в принципе, с любым количеством ступеней. Недостаток её заключается в том, что ресурсы последующих ступеней не могут быть использованы при работе предыдущей, являясь для неё пассивным грузом.

При продольном разделении первая ступень состоит из нескольких одинаковых ракет (на практике — от 2 до 8) или разных, работающих одновременно и располагающихся вокруг корпуса второй ступени симметрично, чтобы равнодействующая сил тяги двигателей первой ступени была направлена по оси симметрии второй. Такая схема позволяет работать двигателю второй ступени одновременно с двигателями первой, увеличивая, таким образом, суммарную тягу, что особенно нужно во время работы первой ступени, когда вес ракеты максимален. Ракета с продольным разделением ступеней, теоретически, может иметь неограниченное количество ступеней, работающих параллельно, но на практике количество таких ступеней ограничено двумя. Известен проект ракеты-носителя «Виктория-К», имеющей три ступени с продольным разделением[1].
Существует и комбинированная схема разделения — продольно-поперечная, позволяющая совместить преимущества обеих схем, при которой первая ступень разделяется со второй продольно, а разделение всех последующих ступеней происходит поперечно. Пример такого подхода — отечественный носитель «Союз».

Уникальную схему двухступенчатой ракеты с продольным разделением имеет космический корабль «Спейс-Шаттл», первая ступень которого состоит из двух боковых твердотопливных ускорителей, главные двигатели второй ступени установлены на орбитере (собственно многоразовый космический корабль), а топливо второй ступени содержится во внешнем баке. После исчерпания топлива во внешнем баке, он отделяется и сгорает в атмосфере, главные двигатели отключаются[2], а вывод корабля на орбиту завершает с помощью маневровой двигательной установки орбитера. Такая схема позволяет повторно использовать дорогостоящие главные двигатели.

При поперечном разделении ступени соединяются между собой специальными секциями — переходниками — несущими конструкциями цилиндрической или конической формы (в зависимости от соотношения диаметров ступеней), каждый из которых должен выдерживать суммарный вес всех последующих ступеней, помноженный на максимальное значение перегрузки, испытываемой ракетой на всех участках полёта, на которых данный переходник входит в состав ракеты.
При продольном разделении на корпусе второй ступени создаются силовые бандажи (передний и задний), к которым крепятся блоки первой ступени.

Элементы, соединяющие части составной ракеты, сообщают ей жёсткость цельного корпуса, а при разделении ступеней должны практически мгновенно освобождать верхнюю ступень. Обычно соединение ступеней выполняется с помощью пироболтов. Пироболт — это крепёжный болт, в стержне которого рядом с головкой создается полость, заполняемая бризантным взрывчатым веществом с электродетонатором. При подаче импульса тока на электродетонатор происходит взрыв, разрушающий стержень болта, в результате чего его головка отрывается. Количество взрывчатки в пироболте тщательно дозируется, чтобы, с одной стороны, гарантировать отрыв головки, а, с другой — не повредить ракету. При разделении ступеней на электродетонаторы всех пироболтов, соединяющих разделяемые части, одновременно подаётся импульс тока, и соединение освобождается.

Далее ступени должны быть разведены на безопасное расстояние друг от друга. (Запуск двигателя высшей ступени вблизи низшей может вызвать прогар её топливной ёмкости и взрыв остатков топлива, который повредит верхнюю ступень, или дестабилизирует её полет.) При разделении ступеней в атмосфере для их разведения может быть использована аэродинамическая сила встречного потока воздуха, а при разделении в пустоте иногда используются вспомогательные небольшие твердотопливные ракетные двигатели.

На жидкостных ракетах эти же двигатели служат и для того, чтобы «осадить» топливо в баках верхней ступени: при выключении двигателя низшей ступени ракета летит по инерции, в состоянии свободного падения, при этом жидкое топливо в баках находится во взвешенном состоянии, что может привести к сбою при запуске двигателя. Вспомогательные двигатели сообщают ступени небольшое ускорение, под действием которого топливо «оседает» на днища баков.

На приведённом выше снимке ракеты «Сатурн-5», на корпусе третьей ступени (крайняя слева, в кадре представлена частично) виден чёрный корпус одного из вспомогательных твердотопливных двигателей разведения 3-й и 2-й ступеней.

Увеличение числа ступеней даёт положительный эффект только до определённого предела. Чем больше ступеней — тем больше суммарная масса переходников, а также двигателей, работающих лишь на одном участке полёта, и, в какой-то момент, дальнейшее увеличение числа ступеней становится контрпродуктивным. В современной практике ракетостроения более четырёх ступеней, как правило, не делается.

При выборе числа ступеней важное значение имеют также вопросы надёжности. Пироболты и вспомогательные РДТТ — элементы одноразового действия, проверить функционирование которых до старта ракеты невозможно. Между тем, отказ только одного пироболта может привести к аварийному завершению полёта ракеты. Увеличение числа одноразовых элементов, не подлежащих проверке функционирования, снижает надёжность всей ракеты в целом. Это также заставляет конструкторов воздерживаться от слишком большого количества ступеней.

См. также[править | править код]

  • Ракета
  • Формула Циолковского

Источник: ru.wikipedia.org

Двигатели космических ракет тема широко обсуждаемая. Но не все читатели и комментаторы, в общем-то, представляют, как они устроены. Небольшой и короткий ликбез, да еще и с примерами.

РН Atlas и устройство РД-180

Отличие от авиационных, автомобильных и других…

Их много. Но для целей этой статьи важно одно. Ракетным двигателям для работы нужно не только горючее, но и окислитель.

Нам кажется привычным – залил бензин (горючее) в бензобак и поехал. С ракетой так не получится. Автомобильные, авиационные, судовые и другие двигатели работают в условиях плотной кислородсодержащей (окислитель) атмосферы Земли.

Кислород, как известно, необходим для поддержания горения. Ракета плотные слои атмосферы преодолевает в течение короткой стадии полета, сразу же после старта. Поэтому, взять кислород для работы своих двигателей из атмосферы ракета она не может. И поэтому ее заправляют не только горючим, но и окислителем, как правило, кислородом.

Итак, ракетное топливо двухкомпонентное.

Само горючее, как правило это:

— керосин,

— метан (сжиженный),

— водород (сжиженный).

Окислитель:

— кислород (сжиженный).

Почему «окислитель»? Потому что горение, это и есть химическая реакция окисления, сопровождающаяся высокой скоростью реакций и выделением теплоты и света. (Кстати, образование ржавчины, тление и многие другие процессы также являются окислением, только не столь быстрым)

Есть топливные пары без кислорода. Например, гептил (горючее) – тетраоксид диазота (окислитель). Такая пара используется в двигателях ракет семейства «Протон». Гептил очень токсичен.

Идем дальше.

Виды движения в атмосфере

Может показаться, что с этого следовало начать статью. Может быть.

Чтобы добраться до космоса, «нужно пролететь атмосферу». Итак, есть несколько видов движения в атмосфере:

Баллистическое движение

Это движение тела в пространстве под действием внешних сил. Снаряды и пушечные ядра, боеголовки баллистических ракет и так далее – все это баллистическое движение. «Вагон-снаряд» отправленный на Луну французским писателем Жюлем Верном в научно-фантастическом романе «Из пушки на Луну», также.

Аэростатическое движение

Для создания подъемной силы используется заключенный в оболочке газ (или нагретый воздух) с плотностью меньшей, чем плотность окружающего воздуха.

Воздушные шары, аэростаты, дирижабли — все это летательные аппараты легче воздуха. Американская компания World View собиралась отправлять таким образом туристов в «ближний космос» (какой хороший маркетинговый термин), то есть на высоту 30 километров.

Аэродинамическое движение

Подъемная сила создается крылом самолета благодаря поступательному движению летательного аппарата, которое сообщает ему силовая установка — авиационный двигатель.

И наконец, Реактивное движение

Ракетные двигатели — это реактивные двигатели.

Под реактивным движением тела понимают такое движение, которое возникает при отделении от тела (ракеты) некоторой его части (горячие газы из сопла двигателя под высоким давлением) с определенной скоростью относительно него.

Таким образом, ракетный двигатель выбрасывает массу (горящее топливо) в одном направлении, а сам движется в противоположном. Процесс горения ускоряет массы топлива так, что они выходят из сопла ракеты на высокой скорости.

Это были принципы, теперь к устройству.

Начнем с простого

В жидкостных ракетных двигателях топливо и окислитель находятся в жидком состоянии в двух раздельных резервуарах. По трубопроводам они попадают в камеру сгорания. Здесь они перемешиваются и сгорают, создавая поток горячих газов с высокой скоростью и давлением. Эти газы проходят через сопло, которое еще больше их ускоряет, а после выходят, образуя реактивную тягу.

Кажется все просто? На самом деле нет!

Первая инженерная задача

Здесь и далее последовательность задач дана только для упрощения объяснения.

Ввиду высокой температуры горения, и значительного количества выделяемого тепла, даже малой его части достаточно для термического разрушения двигателя. Стенки камеры двигателя и сопло нужно охлаждать.

Но чем? Нужно максимально простое решение, чтобы не усложнять двигатель и не увеличивать его вес.

Самое распространенное: охлаждать одним из компонентов топлива, как правило, это горючее. В стенке камеры сгорания и верхней, наиболее нагреваемой части сопла создаются полости («рубашка охлаждения»), через которые перед поступлением в форсуночную головку камеры сгорания проходит горючее. Таким образом, холодная жидкость сначала циркулирует вокруг перегретых частей двигателя, чтобы охладить их, а затем попадает в камеру сгорания.

Компоненты топлива во многих случаях охлаждаются до более низких температур. Это позволяет повысить их плотность и поместить большее количество топлива в топливные баки. Даже керосин. Например, в Falcon 9 керосин охлаждается с 21 °C до −7 °C. Пр этом его плотность увеличивается на 2,5 %.

Вторая инженерная задача

Компоненты топлива сами в камеру сгорания не будут поступать. Нужны насосы. Они будут создавать высокое давление, чтобы преодолеть давление, которое создает в камере сгорания сжигаемое топливо.

Но нам снова, нужно чтобы двигатель и ракета были максимально простыми и легкими (насколько это можно). Решение нашлось. Часть топлива используется для работы насосов. Оно подается в небольшую камеру «предварительного» сгорания – газогенератор. Горячий газ из нее приводит в действие турбину, она – приводит в действие топливные насосы. Турбина одна. Насосов два – на одном валу.

Что дальше?

Что делать с топливом, которое прошло через газогенератор. Его после раскручивания турбины можно сбрасывать наружу. Именно так устроен двигатель Merlin (кислородно-керосиновый), используемый SpaceX на ракетах Falcon 9. Это, так называемая открытая схема.

Двигатель Merlin и его «выхлопная труба» – отводной патрубок для газов газогенератора / © SpaceX

Схема проста, но недостаточно эффективна. В создании тяги ракетного двигателя топливо, прошедшее через газогенератор, напрямую не участвует, а место в ракете занимает.

Можно его дожигать в камере сгорания. Как, например, в РД-180 (кислородно-керосиновый), который покупают у нас американцы для установки на первую ступень ракет семейства «Атлас» начиная с Atlas III.

Двигатель РД-180 это практически все самые известные космические миссии, которыми так гордится NASA: миссия к Плутону «Новые горизонты», миссия к Луне LRO и Марсу MRO, миссия к Юпитеру «Юнона», «Обсерватория солнечной динамики», «Марсианская научная лаборатория» (Curiosity), марсианский геолог и InSight, полет за грунтом астероида Бенну (OSIRIS-REx) аппарат для исследования атмосферы Марса MAVEN и многое другое.

Это схема называется закрытой. Горячий газ вначале вращает турбину турбонасосного агрегата, а затем подается в камеру сгорания, эффективно участвуя в создании тяги ракетного двигателя. Топливо не пропадает и полностью участвует в создании тяги. Такой двигатель гораздо сложнее. В двигателе закрытой схемы можно пропустить больше газа через турбонасосный агрегат, а значит, больше поднять давление в камере сгорания. Чем больше давление в камере сгорания, тем больше тяга. Высокое давление – большая эффективность двигателя.

Однако у него есть недостатки — высокая нагрузка на турбину двигателя, относительно высокие сложность и стоимость.

Зато двигатели Merlin имеющие низкое давление в камере сгорания достаточно просты в производстве и дешевы. Именно на них Илон Маск потеснил «Роскосмос» на рынке космических запусков и запустил в космос родстер Tesla.

Усложняем дальше

А еще можно все топливо пропускать через газогенератор . Такая схема называется полнопоточная закрытая. Мы делали такой двигатель в 60-х (РД-270), но в таких двигателях нужно два газогенератора и два турбонасосных агрегата, которые ведут в одну камеру сгорания и работают параллельно.

Однако в РД-270 наблюдались низкочастотные пульсации в газогенераторе и камере. Возникла проблема в синхронизации совместной работы двух турбонасосных агрегатов. Они пытались пересилить друг друга и стабилизировать их без помощи быстродействующего бортового компьютера не удалось. Но такого в то время еще не было.

В феврале этого года Илон Маск объявил результаты тестирования двигателя Raptor (кислородно-метановый). Его получат ракета Super Heavy и корабль Starship. По заявлениям Маска его характеристики лучше, чем у РД-180. Высокое давление в камере сгорания обеспечено именно полнопроточной закрытой схемой.

Открытая, закрытая, полнопоточная закрытая схема / © Википедия/Познавательная копилка

Можно ли лучше?

Если проект Маска будет успешен, нам нужно будет делать что-то еще лучшее. Возможно, развивать трехкомпонентные двигатели многократного использования. При запуске такой двигатель работал бы на паре кислород/керосин, а на больших высотах керосин заменялся бы водородом.

Использование в одном двигателе комбинации двух горючих – углеводородного, обладающего высокой плотностью, и водорода, обеспечивающего высокие значения удельного импульса, может расширить возможности ракет-носителей.

Такой подход, позволит создать одноступенчатую возвращаемую ракету-носитель и заметно удешевить космические запуски и в будущем.

Несколько пояснений

Здесь, как видно из примеров, раскрыта самая популярная классическая схема, которая массово используется для выведения в открытый космос космических аппаратов: жидкостный ракетный двигатель. Но это все, что можно рассказать за три минуты.

А в целом ракетные двигатели делятся на:

— химические,

— электрические,

— ядерные.

Химические ракетные двигатели бывают жидкостными и твердотопливными (ускорители космического челнока Space Shuttle, например).

Но есть еще и гибридные двигатели использующий компоненты ракетного топлива в разных агрегатных состояниях — жидком и твердом. Например, двигатель космического челнока SpaceShipOne работающий на полибутадиене (твердый) и закиси азота (жидкость).

Если статья была Вам полезна, поставьте «Лайк».

Мы уже знаем, о чем вам рассказать в следующий раз. Серия «Просто и понятно» только начинается. Подписывайтесь, ставьте лайки, поделитесь с друзьями в соцсетях, нам это очень важно.

Источник: zen.yandex.ru

Краткая история ракет

Общий принцип реактивного полета, который лег в основу всех ракет, прост — от тела отделяется какая-то часть, приводящая все остальное в движение.

Кто первым реализовал этот принцип – неизвестно, но различные догадки и домыслы доводят генеалогию ракетостроения аж до Архимеда. Доподлинно о первых подобных изобретениях известно, что ими активно пользовались китайцы, которые заряжали их порохом и за счет взрыва запускали в небо. Таким образом они создали первые твердотопливные ракеты. Большой интерес к ракетам появился у европейских правительств в начале

Второй ракетный бум

Ракеты ждали своего часа и дождались: в 1920-х годах начался второй ракетный бум, и связан он в первую очередь с двумя именами.

Константин Эдуардович Циолковский — ученый-самоучка из Рязанской губернии,  невзирая на трудности и препятствия, сам дошел до многих открытий, без которых невозможно было бы даже говорить о космосе. Идея использования жидкого топлива, формула Циолковского, которая рассчитывает необходимую для полета скорость, исходя из соотношения конечной и начальной масс, многоступенчатая ракета — все это его заслуга. Во многом под влиянием его трудов создавалось и оформлялось отечественное ракетостроение. В Советском Союзе начали стихийно возникать общества и кружки по изучению реактивного движения, в числе которых ГИРД — группа изучения реактивного движения, а в 1933 году под патронажем властей появился Реактивный институт.

Второй герой ракетной гонки — немецкий физик Вернер фон Браун. Браун имел отличное образование и живой ум, а после знакомства с другим светилом мирового ракетостроения, Генрихом Обертом, он решил приложить все свои силы к созданию и усовершенствованию ракет. В годы Второй Мировой фон Браун фактически стал отцом «оружия возмездия» Рейха — ракеты «Фау-2», которую немцы начали применять на поле боя в 1944 году. «Крылатый ужас», как называли её в прессе, принес разрушение многим английским городам, но, к счастью, на тот момент крах нацизма был уже делом времени. Вернер фон Браун вместе со своим братом решил сдаться в плен к американцам, и, как показала история, это был счастливый билет не только и не столько для ученых, сколько для самих американцев. С 1955 года Браун работает на американское правительство, и его изобретения ложатся в основу космической программы США.

Но вернемся в 1930-е. Советское правительство по достоинству оценило рвение энтузиастов на пути к космосу и решило употребить его в своих интересах. В годы войны себя отлично показала «Катюша» — система залпового огня, которая стреляла реактивными ракетами. Это было во многом инновационное оружие: «Катюша» на базе легкого грузовика «Студебеккер» приезжала, разворачивалась, обстреливала сектор и уезжала, не давая немцам опомниться.

Окончание войны подкинуло нашему руководству новую задачу: американцы продемонстрировали миру всю мощь ядерной бомбы, и стало совершенно очевидно, что на статус сверхдержавы может претендовать только тот, у кого есть нечто похожее. Но здесь была проблема. Дело в том, что, помимо самой бомбы, нам нужны были средства доставки, которые бы смогли обойти ПВО США. Самолеты для этого не годились. И СССР решил сделать ставку на ракеты.

Константин Эдуардович Циолковский умер в 1935 году, но ему на смену пришло целое поколение молодых ученых, которое и отправило человека в космос. Среди этих ученых был Сергей Павлович Королев, которому суждено было стать «козырем» Советов в космической гонке.

СССР принялся за создание своей межконтинентальной ракеты со всем усердием: были организованы институты, собраны лучшие ученые, в подмосковных Подлипках создается НИИ по ракетному вооружению, и работа кипит вовсю.

Только колоссальное напряжение сил, средств и умов позволило Советскому Союзу в кратчайшие сроки построить свою ракету, которую назвали Р-7. Именно её модификации вывели в космос «Спутник» и Юрия Гагарина, именно Сергей Королев и его соратники дали старт космической эре человечества. Но из чего состоит космическая ракета?

Конструкция ракеты

Любая конструкция, которую мы запускаем в космос, состоит условно из двух частей: космического корабля и ракеты-носителя. Из-за земного притяжения, сопротивления воздуха и плотности атмосферы основная масса конструкции заключается как раз в ракете-носителе, которая должна вытягивать полезную нагрузку на орбиту.

С самого начала освоения космоса люди поняли, что нужно делать многоступенчатые ракеты. Таким образом, как только у одной ступени заканчивалось топливо, она отделялась от всей конструкции и облегчала дальнейший полет. Схем расположения ступеней много: есть продольные, поперечные, смешанные. Есть также разгонные ступени, которые включаются на последнем этапе, уже в космосе, и выводят на орбиту космический аппарат.

Каждая ступень представляет из себя двигатель с топливным баком и необходимые для крепления, защиты и безопасности устройства.

В топливных баках содержатся два компонента — жидкость и окислитель, если мы говорим о жидкостных двигателях. С помощью насоса топливо и окислитель поступают в камеру сгорания, там смешиваются, поджигаются и через сопло выбрасывают реактивную струю. Смесь топлива и окислителя в таком случае становится рабочим телом системы — расходуя его, система движется в противоположном направлении от реактивной струи. Все по законам Ньютона.

На ракетных двигателях РД-107, РД-108 и РД-109 в качестве топлива использовался керосин, а в качестве окислителя — жидкий кислород. К примеру, на современном «Протоне» для тех же нужд используют гептил и N2O4.

Технология многоступенчатых ракет на жидком топливе оказалась настолько надежной и универсальной, что с их помощью летают в космос до сих пор. Более того, этот способ оказался универсальным — ничего другого мы пока не придумали. Первый искусственный спутник Земли летал на двухступенчатой ракете на керосине, Falcon9 Илона Маска, хоть они и научились возвращать ступени, идут все по тому же, известному пути — две ступени и керосин.

Очевидно, что в ближайшие годы нам не стоит ожидать отказа от ракет, как основного способа космических путешествий. Квантовые телепорты, антигравитация и прочее — пока только хорошие названия для глав фантастической книги, страницы которой придется писать нашим потомкам. А пока заправляем ракеты и летим в небо.

Источник: sciencepop.ru


Leave a Comment

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.