Тепловой насос воздух вода для отопления дома


Воздушные тепловые насосы относятся к категории современного оборудования, использующего в работе альтернативные источники энергии. Источником тепла для них является окружающая нас атмосфера. Расходуя 1 кВт электроэнергии при помощи этих установок можно получить 4 кВт тепловой энергии. При этом они абсолютно безопасны экологически и не требуют сжигания топлива.Тепловой насос воздух вода для отопления дома

Важно! Если Вы хотите использовать эту систему в качестве альтернативы газовому отоплению, учтите, что теплотворность 1 кВт электроэнергии равна теплу, вырабатываемому 0.11 м3 природного газа. Более подробно о количестве энергии, выделяемой различными материалами, можно посмотреть в этой таблице.

Виды тепловых насосов

Существуют два вида установок. В одном тепловая энергия атмосферного воздуха передается для нагрева жидкого теплоносителя в системе отопления и горячей воды для хозяйственных нужд. В другом случае нагревается непосредственно воздух внутри помещения, без возможности нагрева горячей воды, это принцип называется воздух-воздух.


Кроме атмосферных существуют геотермальные и гидротермальные тепловые насосы. В их работе тепло отбирается из пробуренной скважины или водоема. Однако дополнительные расходы, связанные с бурением, защитой от коррозии, обеспечением электробезопасности и заиливанием, существенно усложняют монтаж и увеличивают сумму капитальных затрат.

Системы тепловых насосов воздух-вода являются самым оптимальным вариантом по надежности, уровню комфорта и стоимости. При этом имеют большой эксплуатационный срок.

Принцип работы насоса воздух-вода

Тепловой насос воздух вода для отопления домаКак уже было сказано, основным источником тепловой энергии для установок этого типа является атмосферный воздух. В принципиальной основе работы воздушных насосов лежит физическое свойство жидкостей к поглощению и отдаче тепла во время фазового перехода из жидкого состояния в газообразное, и обратно. В результате смены состояния выделяется температура. Система работает по принципу холодильника наоборот.

Для эффективного использования этих свойств жидкости легкокипящий хладагент (фреон, хладон) циркулирует по замкнутому контуру в конструкцию которого входят:

  • компрессор с электроприводом;
  • обдуваемый вентилятором испаритель;
  • дроссельный (расширительный) клапан;
  • пластинчатый теплообменник;
  • медные или металлопластиковые циркуляционные трубки, соединяющие основные элементы схемы.

Движение хладагента по контуру осуществляется благодаря давлению, развиваемому компрессором. Для снижения тепловых потерь трубы покрываются теплоизоляционным слоем из искусственного каучука или вспененного полиэтилена с защитным металлизированным покрытием. В качестве хладагента используют хладон или фреон, способный закипать при отрицательной температуре и не замерзающий до -40°C.

Весь процесс работы состоит из следующих последовательных циклов:

  1. В радиаторе испарителя находится жидкий хладагент, температура которого ниже, чем у наружного воздуха. Во время активного обдува радиатора тепловая энергия от низко потенциального воздуха передается хладону, который закипает и переходит в газообразное состояние. При этом его температура повышается.
  2. Подогретый газ поступает в компрессор, где в процессе сжатия еще более нагревается.
  3. В сжатом и разогретом состоянии пары хладагента подаются в пластинчатый теплообменник, где по второму контуру циркулирует теплоноситель системы отопления. Поскольку температура теплоносителя значительно ниже, чем у разогретого газа, фреон активно конденсируется на пластинах теплообменника, отдавая тепло в систему отопления.
  4. Охлажденная парожидкостная смесь поступает на дроссельный клапан, который пропускает к испарителю только охлажденный жидкий хладагент с низким давлением. После чего весь цикл повторяется.

Для увеличения эффективности теплоотдачи трубки на испарителя навито спиральное оребрение. Расчет системы отопления, выбор циркуляционных насосов и другого оборудования должен учитывать гидравлическое сопротивление и коэффициент теплопередачи пластинчатого теплообменника установки.

Видео обзор устройства системы и ее работы

Тепловой насос воздух вода для отопления дома

Инверторные тепловые насосы

Наличие инвертора в составе установки позволяет обеспечить плавный пуск оборудования и автоматическое регулирование режимов в зависимости от температуры наружного воздуха. Это позволяет максимально повысить эффективность работы теплового насоса за счет:

  • достижения КПД на уровне 95-98%;
  • снижения потребления энергии на 20-25%;
  • минимизации нагрузок на электрическую сеть;
  • увеличения сроков эксплуатации установки.

В результате температура внутри помещений стабильно поддерживается на одном уровне, не зависимо от изменения погоды. При этом наличие инвертора в комплекте с автоматизированным блоком управления обеспечит не только зимний обогрев, но и подачу охлажденного воздуха летом при жаркой погоде.

В то же время следует учесть, что наличие дополнительного оборудования всегда влечет за собой его удорожание и увеличение срока окупаемости.

Работа системы отопления от такого насоса


Тепловой насос воздух вода для отопления домаПринцип работы самой установки был описан выше. В результате ее происходит нагрев теплоносителя во втором контуре теплообменника, который и будет служить в дальнейшем источником тепла для обогрева здания или отдельных помещений.

Классическим вариантом распределения нагретого теплоносителя является соединение теплообменника двумя отдельными линиями к распределительной гребенке и водонагревательному бойлеру. К гребенке в свою очередь подключаются отопительные приборы, теплые полы и другое оборудование. Такое распределение необходимо из-за различных режимов работы систем горячего водоснабжения и отопления.

Линейка тепловых насосов воздух-вода определяет мощности установок от 2 до 120 кВт, что позволяет выбрать оборудование для отопления и горячего водоснабжения жилого дома любой площади.

Режим подачи холодного воздуха

Конструкция тепловых насосов позволяет не только обогревать дом зимой, но и обеспечить подачу охлажденного воздуха в жаркие дни летом. Для этого циркуляция хладагента запускается по обратному циклу. Однако, охлаждение отопительных приборов не обеспечит необходимый эффект поскольку опускающийся вниз холодный воздух не сможет создать комфортных условий по всему объему помещения. Поэтому для того чтобы использовать установку воздух-вода для кондиционирования потребуется наличие обдуваемого вентилятором конвектора.


Кроме этого в циркуляционный контур дополнительно устанавливают 4-ходовой клапан, второй дроссельный клапан и 2 линии труб. При переключении клапана закрывается линия в направлении «зимнего» дросселя и открывается в сторону «летнего», и охлажденный теплоноситель подается на конвектор. Подогрев горячей воды так же будет отключен.

Стоимость такого усовершенствования с учетом дополнительного оборудования, материалов и работ может быть вполне сравнима со стоимостью кондиционера. Поэтому в большинстве случаев будет вполне разумным отказаться от эксплуатации в сплит-режиме, а просто купить климатическую установку.

Преимущества и недостатки


Достоинства Недостатки
экономически выгодный тип отопительного оборудования с минимально возможными капиталовложениями и эксплуатационными затратами сложную схему подключения для работы в режиме охлаждения воздуха
возможность одновременного обогрева помещений и приготовления горячей воды для хозяйственных нужд непропорциональный рост расхода электроэнергии при понижении наружной температуры
наличие высокотемпературных моделей, способных обеспечить стабильную работу теплых полов, фанкойлов и конвекторов вероятная остановка отопления при температуре наружного воздуха ниже -25°C
высокую энергоэффективность оборудования на уровне А+++ наличие шумового фона во время работы
возможность совместной работы с отопительными котлами

зависимость от стабильного электроснабжения.

автоматизированное управление оборудованием  
простой монтаж и обслуживание  
возможность работы на аккумулятор тепла позволяет более экономно расходовать электроэнергию с учетом тарифов по времени суток  

 

Большинство моделей прекрасно работают до температуры наружного воздуха -15°C. При дальнейшем похолодании эффективность системы резко снижается. Это связано с такой технической характеристикой, как точка кипения хладагента. Для наиболее распространенных марок она находится в пределах от -20°C до -35°C. При меньшей температуре воздуха хладагент перестает закипать в испарителе и работа системы прекращается. Поэтому для жилых домов и коттеджей в холодной климатической зоне необходимо наличие дополнительного котла или камина.


Монтаж оборудования

Блок испарителя может быть установлен на опорах возле земли или на стене здания. Для защиты от шума работающего компрессора второй блок рекомендуется устанавливать в отдельном помещении, в подвале или на чердаке. При этом необходимо принимать рекомендуемое изготовителями расстояние между блоками не более 10 метров.

После этого блоки соединяются между собой металлопластиковыми или медными трубками в усиленной тепловой изоляции с фольгированной защитой. На последнем этапе монтажа ко второму контуру пластинчатого теплообменника подключают трубы системы отопления и подводят линию электроснабжения.

Популярные изготовители, обзор цен

Тепловые насосы воздух-вода на российском рынке продает более 20 различных компаний из Европы, Японии, Южной Кореи и Китая. В числе наиболее популярных можно назвать:

  • Mitsubishi Electric;
  • Cooper&Hunter;
  • Hitachi;
  • Panasonic.

Простые и доступные по цене, но менее комфортные и надежные бюджетные модели изготавливают Neoclima и Tosot.

Тепловой насос воздух вода для отопления домаТепловые насосы концерна Mitsubishi Electric отличаются самым оптимальным соотношением цены, качества и удобного пользования. Внешние блоки работают без потери тепловой мощности до температуры -15°C и компания гарантирует подачу тепла при похолодании до -28°C. Стоимость  данного оборудования начинается от 10000 долларов.

Бытовая серия Zubadan этого же производителя и полупромышленная Mr.Slim включают широкий ряд моделей мощностью от 2,8 до 34,6 кВт. Варианты установки: подвесной, настенный или напольный. Используются для отопления жилых домов, офисов, небольших магазинов и мастерских.


Тепловой насос воздух вода для отопления домаТорговый бренд Cooper&Hunter представлен на рынке большим количеством моделей, входящих в 7 бытовых серий и 2 промышленные. Это американская компания, но ее производство расположено в Китае. Мощность предлагаемого оборудования от 2,5 до 112 кВт. Все установки:

  • рассчитаны на устойчивую эксплуатацию в диапазоне температур наружного воздуха от -25°C до +40°С (у некоторых моделей больше);
  • специально адаптированы для использования в северных странах Европы;
  • имеют специальную защиту от обмерзания;
  • нечувствительны к перепадам напряжения в диапазоне 110-260 Вольт;
  • отличаются малым уровнем шума во время работы;

При выборе теплового насоса не следует искать самый дешевый вариант, поскольку обычно такие установки имеют низкое качество изготовления слабые технические характеристики и непродолжительный срок эксплуатации. Однако и слишком высокая стоимость зачастую бывает не оправдана. Лучшее решение всегда где-то посередине.

Источник: vremya-stroiki.net

Тепловой насос и его разновидности


Тепловой насос — это специализированное оборудование, которое собирает термоэнергию, а затем передает ее на отопительные либо нагревательные приборы. Классифицируют насосы по источнику энергии. Название типа дополняется двумя элементами: источником и носителем. Первый из них обозначает среду, из которой получают тепло, а второй — среду, которая переносит тепло.

Основные типы насосных систем для домашнего использования:

  • Грунт-вода. Источником термоэнергии служит грунт, а носителем служит жидкость (соляной раствор либо гликолевая смесь, либо спиртово-водный раствор).
  • Вода-вода. Источником служит водоем либо грунтовые воды, а носителем — жидкость.
  • Воздух-вода. В качестве источника тепла используется атмосферный либо вентиляционный воздух, в качестве носителя — жидкость.
  • Вода-воздух. Источник — водоем, носитель — воздух.
  • Воздух-Воздух. Источник и носитель — воздух.

Тепловой насос и его разновидности

Производительность насосной системы зависит от стабильности температуры источника энергии. В этом отношении выигрывает грунт, потому что он нагревается не только от солнца, но и от энергии ядра земли. Вторыми по эффективности являются водные системы. В течение года температура этих источников варьируется от +7 до +12 градусов, и этого достаточно для выстраивания автономной системы отопления.


Но все равно самым популярным вариантом является воздушная тепловая насосная система. Она имеет невысокую производительность, которая напрямую зависит от сезона, но подкупает своей простотой. Если вы ищете дополнительный источник обогрева, то тепловой насос воздух-вода для отопления дома подойдет идеально.

Принцип работы тепловых насосов

По своей конструкции тепловая насосная система является парокомпрессионной установкой. Самостоятельно такую систему можно соорудить:

  • из испарителя, в котором жидкий хладагент нагревается и становится паром;
  • компрессора, который нужен для нагрева пара под давлением;
  • конденсатора, который передает тепловую энергию на внутренний контур отопительной системы;
  • дроссельного клапана, который служит регулятором системы.

Как уже указывалось, самой простой является система типа воздух-вода. Он работает как холодильник, но отдает тепло не в окружающее пространство, а передает его в отопительную систему.

Принцип работы тепловых насосов

Происходит это так:

  • Незамерзающая смесь проходит через коллектор и нагревается, а потом несет тепло к насосу.
  • Когда нагретая жидкость проходит через испаритель, тепло поглощается холодильным агентом (веществом, которое закипает при низкой температуре). Хладагент закипает и преобразуется в пар.
  • Пар проходит через компрессор, где под давлением его температура возрастает еще больше.
  • Горячий пар проходит через конденсатор и передается в отопительную систему дома по трубам.
  • В процессе передачи тепла хладагент остывает и снова в жидком состоянии попадает в коллектор.
  • Цикл повторяется.

Самодельный тепловой насос воздух-вода

Характеризуется насосная система своей мощностью, и чем мощнее, тем она дороже. Покупное оборудование обойдется в немалую сумму. Стоимость насоса европейского производства составит $5000-7000 (в России рынок насосного оборудования слабо развит). Такие затраты окупятся только через пару лет. Чтобы сэкономить до 90% от суммы, можно собрать устройство самому, а закупить только составляющие. В этом случае затраты не превысят $500.

Самодельный тепловой насос воздух-вода

Выше приведена схема теплового насоса вода-воздух.

Составляющие компоненты

Для самостоятельной сборки потребуются следующие элементы:

  • столитровый стальной бак (нержавеющий);
  • несколько медных труб, переходники, муфты и электроды;
  • бочка из пластика объемом около 80 литров;
  • компрессор на 7,2 кВт;
  • автоматический воздухоотводчик Ду 15;
  • сливной кран и предохранительный клапан.

Кроме того, придется купить электроавтоматику, кронштейны для крепления элементов, шланги, манометры и фреон.

Сборка

Собирается тепловой насос воздух-вода своими руками в пять этапов:

  1. Для начала нужно прикрепить к стене два компрессора для кондиционера. Лучше всего подойдут однофазные по 24000 БТУ. Тогда общая тепловая мощность каскада составит 16 кВт. Чтобы снизить пусковой ток, нужно запускать компрессоры асинхронно.
  2. Теперь изготавливается змеевик. Для него понадобится какой-либо баллон, например, газовый, а также медная трубка. Выбираете трубку с достаточно толстыми стенками — больше миллиметра. Трубку нужно аккуратно обмотать вокруг баллона. Змеевик готов.
  3. Из столитрового стального бака делают конденсатор. Для этого бак разрезают пополам и помещают внутрь медный змеевик. После этого к баку привариваются резьбовые соединения, а сам бак заваривается. Готовый конденсатор крепится к стене при помощи кронштейнов.
  4. Испаритель делается из пластиковой бочки. В нее также нужно поместить медный змеевик диаметром около полутора сантиметров. После этого испаритель вешается на стену при помощи кронштейнов. Слив и подводка воды будет происходить по трубам из металлопластика.
  5. На последнем этапе стоит привлечь специалиста, который занимается обслуживанием холодильного оборудования. Он соединит все элементы, а также при помощи специализированного оборудования закачает в систему холодильный агент — фреон. Непрофессионалы могут сломать систему, а также получить серьезные травмы. Кроме того, специалист сможет протестировать систему.

Самодельный тепловой насос воздух-вода

Теперь ваш насос готов к работе. Но имейте в виду, что воздушная система не позволяет полностью обеспечить дом теплом, для этого нужны более мощные насосы, где источником энергии служат грунт либо вода, или же дополнительные гелиопанели на крыше.

Источник: altenergiya.ru

Виды конструкций тепловых насосов

Виды тепловых насосов для отопления домаТип ТН принято обозначать словосочетанием, указывающим на среду-источник и теплоноситель системы отопления.

Существуют следующие разновидности:

  • ТН «воздух – воздух»;
  • ТН «воздух – вода»;
  • ТН «грунт – вода»;
  • ТН «вода – вода».

Самый первый вариант – это обычная сплит-система, работающая в режиме обогрева. Испаритель монтируется на улице, а внутри дома устанавливается блок с конденсатором. Последний обдувается вентилятором, благодаря чему в помещение подается теплая воздушная масса.

Если такую систему оснастить специальным теплообменником с патрубками, получится ТН типа «воздух – вода». Он подключается к водяной системе отопления.

Испаритель ТН типа «воздух – воздух» или «воздух – вода» можно разместить не на улице, а в канале вытяжной вентиляции (она должна быть принудительной). В этом случае эффективность ТН будет увеличена в несколько раз.

Теплонасосы типа «вода – вода» и «грунт – вода» для отбора тепла используют так называемый наружный теплообменник или, как его еще называют, коллектор.

Виды тепловых насосов для отопления дома

Принципиальная схема работы теплового насоса

Это длинная закольцованная труба, как правило, пластиковая, по которой циркулирует жидкая среда, омывающая испаритель. Обе разновидности ТН представляют собой одно и то же устройство: в одном случае коллектор погружается на дно поверхностного водоема, а во втором – в грунт. Конденсатор такого ТН расположен в теплообменнике, подключаемом к системе водяного отопления.

Подключение ТН по схеме «вода – вода» является гораздо менее трудоемким, чем «грунт – вода», поскольку отпадает необходимость в проведении земляных работ. На дно водоема труба укладывается в виде спирали. Разумеется, для данной схемы подойдет только такой водоем, который зимой не промерзает до дна.

Настало время предметно изучать зарубежный опыт

О тепловых насосах, способных отобрать тепло окружающей среды для отопления зданий, теперь уже знают почти все, и, если еще недавно потенциальный заказчик, как правило, задавал недоуменный вопрос «как это возможно?», то теперь все чаще звучит вопрос «как это правильно сделать?».

Ответить на этот вопрос непросто.

В поисках ответа на многочисленные вопросы, которые неизбежно возникают при попытке проектировать системы отопления с тепловыми насосами, целесообразно обратиться к опыту специалистов тех стран, где тепловые насосы на грунтовых теплообменниках применяются уже давно.

Посещение* американской выставки AHR ЕХРО-2008, которое было предпринято, главным образом, с целью получения информации о методах инженерных расчетов грунтовых теплообменников, прямых результатов в этом направлении не принесло, но на выставочном стенде ASHRAE продавалась книга , некоторые положения которой послужили основой для этой публикации.

Следует сразу сказать, что перенос американской методики на отечественную почву – дело непростое. У американцев все не так, как принято в Европе. Только время они измеряют в тех же единицах, что и мы. Все остальные единицы измерения – чисто американские, а точнее – британские. Особенно не повезло американцам с тепловым потоком, который может измеряться как в британских тепловых единицах, отнесенных к единице времени, так и в тоннах охлаждения, которые придуманы, вероятно, в Америке.

Главная проблема, однако, состояла не в техническом неудобстве пересчета принятых в США единиц измерения, к которым со временем можно и привыкнуть, а в отсутствии в упомянутой книге четкой методической основы построения алгоритма вычислений. Рутинным и широко известным расчетным приемам там уделяется слишком много места, в то время как некоторые важные положения остаются вовсе нераскрытыми.

В частности, такими физически связанными исходными данными для расчета вертикальных грунтовых теплообменников, как температура циркулирующей в теплообменнике жидкости и коэффициент преобразования теплового насоса, нельзя задаваться произвольно, и, прежде чем приступать к вычислениям, связанным с нестационарным теплообменом в грунте, необходимо определить зависимости, связывающие эти параметры.

Критерием эффективности теплового насоса служит коэффициент преобразования ?, величина которого определяется отношением его тепловой мощности к мощности электропривода компрессора. Эта величина является функцией температур кипения в испарителе tu и конденсации tk, а применительно к тепловым насосам «вода-вода» можно говорить о температурах жидкости на выходе из испарителя tи на выходе из конденсатора t2K:

? = ?(t,t2K).         (1)

Анализ каталожных характеристик серийных холодильных машин и тепловых насосов «вода-вода» позволил отобразить эту функцию в виде диаграммы (рис. 1).

Виды тепловых насосов для отопления дома

При помощи диаграммы нетрудно определиться с параметрами теплового насоса на самых начальных стадиях проектирования. Очевидно, например, что, если система отопления, присоединенная к тепловому насосу, рассчитана на подачу теплоносителя с температурой в подающем трубопроводе 50°C, то максимально возможный коэффициент преобразования теплового насоса будет около 3,5. При этом температура гликоля на выходе из испарителя не должна быть ниже +3°С, а это означает, что потребуется дорогой грунтовый теплообменник.

В то же время, если дом обогревается посредством теплого пола, из конденсатора теплового насоса будет поступать в систему отопления теплоноситель с температурой 35°С. В этом случае тепловой насос сможет работать более эффективно, например, с коэффициентом преобразования 4,3, если температура охлажденного в испарителе гликоля будет около –2°С.

Пользуясь электронными таблицами Excel, можно выразить функцию (1) в виде уравнения:

? = 0,1729 • (41,5 + t – 0,015t • t2K – 0,437 • t2K      (2)

Если при желаемом коэффициенте преобразования и заданном значении температуры теплоносителя в системе отопления, работающей от теплового насоса, нужно определить температуру охлажденной в испарителе жидкости, то уравнение (2) можно представить в виде:

         (3)

Выбрать температуру теплоносителя в системе отопления при заданных величинах коэффициента преобразования теплового насоса и температуры жидкости на выходе из испарителя можно по формуле:

    (4)

В формулах (2)…(4) температуры выражены в градусах Цельсия.

Определив эти зависимости, можно теперь перейти непосредственно к американскому опыту.

Методика расчета тепловых насосов

Безусловно, процесс выбора и расчет теплового насоса является весьма сложной в техническом отношении операцией и зависит от индивидуальных особенностей объекта, но ориентировочно он может быть сведен к следующим этапам:

Определяются теплопотери через ограждающие конструкции здания (стены, перекрытия, окна, двери). Сделать это можно, применив следующее соотношение:

Qок = S*( tвн – tнар)* (1 + Σ β ) *n / Rт(Вт)где

tнар – наружная температура воздуха (°С);

tвн – внутренняя температура воздуха (°С);

S – суммарная площадь всех ограждающих конструкций (м2);

n – коэффициент, указывающийвлияние окружающей среды на характеристики объекта. Для помещений, напрямую контактирующих через перекрытия с наружной средой n=1; для объектов, имеющих чердачные перекрытия n=0,9; если же объект размещен над подвальным помещением n = 0,75;

β – коэффициент добавочных теплопотерь, который зависит от типа строения и его географического расположенияβ может варьироваться от 0,05 до 0,27;

Rт – теплосопротивление, определяется по следующему выражению:

Rт = 1/ αвнутр + Σ ( δі / λі ) + 1/ αнар (м2*°С / Вт), где:

δі / λі – расчетный показатель теплопроводности применяемых при строительстве материалов.

αнар– коэффициент теплового рассеивания наружных поверхностей ограждающих конструкций(Вт/ м2*оС);

αвнутр– коэффициент теплового поглощения внутренних поверхностей ограждающих конструкций(Вт/ м2*оС);

— Рассчитываются суммарные теплопотери сооружения по формуле:

Qт.пот = Qок + Qи – Qбп , где:

Qи — затраты энергии на подогрев воздуха поступающего к помещению через естественные неплотности;

Qбп -выделения тепла за счет функционирования бытовых приборов и деятельности людей.

2. На основании полученных данных рассчитывается годичное потребление тепловой энергии для каждого индивидуального объекта:

Qгод = 24*0.63*Qт. пот.*(( d*( tвн — tнар.ср.)/ ( tвн — tнар.))(кВт/час за год.) где:

tвн – рекомендуемая температура воздушной среды внутри помещения;

tнар – наружная температура воздуха;

tнар.ср – среднеарифметическое значение температуры наружного воздуха за весь отопительный сезон;

d – число дней отопительного периода.

3. Для полного анализа потребуется рассчитать и уровень тепловой мощности необходимой для разогрева воды:

Qгв = V * 17(кВт/час за год.) где:

V –объем каждодневного нагрева воды до 50 °С.

Тогда суммарный расход тепловой энергии определится по формуле:

Q = Qгв + Qгод (кВт/час за год.)

Принимая во внимание полученные данные, подобрать наиболее подходящий тепловой насос для отопления и горячего водоснабжения не составит большого труда. Причем расчетная мощность определится как. Qтн=1,1*Q, где:

Qтн=1,1*Q, где:

1,1 – корректирующий коэффициент, указывающий возможность увеличения нагрузки на тепловой насос в период возникновения критических температур.

Виды тепловых насосов для отопления дома

Выполнив расчет тепловых насосов можно подобрать наиболее подходящий тепловой насос, способный обеспечить требуемые параметры микроклимата в помещениях с любыми техническими характеристиками. А учитывая возможность интеграции указанной системы с климатической установкой теплый пол можно отметить, не только ее функциональность, но и высокую эстетическую стоимость. 

Читать еще:

О том как правильно рассчитать кол-во и глубину скважин для ТН можно узнать из следующего видео:

Если Вам понравился материал буду благодарен, если порекомендуете его друзьям или оставите полезный комментарий.

Типы тепловых насосов

Тепловые насосы делят на три основных типа по источнику низкопотенциальной энергии:

  • Воздух.
  • Грунт.
  • Вода — источником могут быть грунтовые воды и водоемы на поверхности.

Для водяных систем отопления, которые более распространены, применяются такие виды тепловых насосов:

Виды тепловых насосов для отопления дома«Воздух-вода» — воздушный тип теплового насоса, обогревающий здание путем забора воздуха снаружи посредством внешнего блока. Работает по принципу кондиционера, только наоборот, преобразуя энергию воздуха в тепло. Такой теплонасос не требует больших затрат на установку, под него не нужно отводить участок земли и, тем более, бурить скважину. Однако, эффективность эксплуатации при низких температурах (-25ºС) снижается и требуется дополнительный источник тепловой энергии.

Устройство «грунт-вода» относится к геотермальным и производит забор тепла из земли с помощью коллектора, уложенного на глубину ниже промерзания грунта. Также здесь существует зависимость от площади участка и ландшафта, если коллектор расположен горизонтально. Для вертикального расположения потребуется бурить скважину.

Виды тепловых насосов для отопления дома«Вода-вода» устанавливается там, где рядом есть водоем или грунтовые воды. В первом случае коллектор укладывается на дно водоема, во втором бурится скважина или несколько, если позволяет площадь участка. Иногда глубина пролегания подземных вод слишком большая, поэтому затраты на установку такого теплонасоса могут быть очень высоки.

Каждый тип теплового насоса имеет свои преимущества и недостатки, если здание находится далеко от водоема или грунтовые воды слишком глубоко, то «вода-вода» не подойдет. «Воздух-вода» будет актуален только в относительно теплых регионах, где температура воздуха в холодное время года не опускается ниже отметки -25º С.

Методика расчета мощности теплового насоса

Помимо определения оптимального источника энергии, потребуется высчитать необходимую для обогрева мощность теплонасоса. Зависит она от величины теплопотерь здания. Произведем расчет мощности теплового насоса для отопления дома на конкретном примере.

Для этого используем формулу Q=k*V*∆T, где

  • Q — это теплопотери (ккал/час). 1 кВт/ч = 860 ккал/ч;
  • V — объем дома в м3 (площадь умножаем на высоту потолков);
  • ∆Т – отношение минимальных температур снаружи и внутри помещения в самый холодный период года, °С. Из внутренней tº вычитаем наружную;
  • k — обобщенный коэффициент теплопередачи здания. Для кирпичного здания с кладкой в два слоя k=1; для хорошо утепленного здания k=0,6.

Таким образом, расчет мощности теплонасоса для отопления кирпичного дома в 100 кв.м и высотой потолков 2,5 м, при перепаде ttº от -30º на улице до +20º внутри, будет таковым:

Q = (100х2.5) х (20- (-30)) х 1 = 12500 ккал/час

12500/860= 14,53 кВт. То есть, для стандартного кирпичного дома площадью 100 м понадобится 14-килловатное устройство.

Выбор типа и мощности теплонасоса потребитель принимает, исходя из ряда условий:

  • географические особенности местности (близость водоемов, наличие грунтовых вод, свободного участка под коллектор);
  • особенности климата (температуры);
  • тип и внутренний объем помещения;
  • финансовые возможности.

Учитывая все вышеизложенные аспекты, вы сможете сделать оптимальный выбор оборудования. Для более эффективного и правильного подбора теплового насоса лучше обратиться к специалистам, они смогут сделать более подробные расчеты и предоставить экономическую целесообразность установки оборудования.

Виды тепловых насосов для отопления дома

Давно и весьма успешно тепловые насосы используются в бытовых и промышленных холодильниках и кондиционерах.

Сегодня эти устройства стали применять и для выполнения функции противоположного характера – обогрева жилища в период холодов.

Давайте же посмотрим, как используются тепловые насосы для отопления частных домов и что нужно знать, чтобы правильно рассчитать все его компоненты.

Пример расчета теплового насоса

Подберем ТН для системы отопления одноэтажного дома общей площадью 70 кв. м со стандартной высотой потолка (2,5 м), рациональной архитектурой и теплоизоляцией ограждающих конструкций, соответствующей требованиям современных строительных норм. На обогрев 1-го кв. м такого объекта по общепринятым нормам приходится тратить 100 Вт тепла. Таким образом, для отопления всего дома понадобится:

Q = 70 х 100 = 7000 Вт = 7 кВт тепловой энергии.

Выбираем тепловой насос марки «ТеплоДаром» (модель L-024-WLC) с тепловой мощностью W = 7,7 кВт. Компрессор агрегата потребляет N = 2,5 кВт электроэнергии.

Расчет коллектора

Грунт на отведенном под строительство коллектора участке – глинистый, уровень грунтовых вод высокий (принимаем теплотворную способность p = 35 Вт/м).

Мощность коллектора определяем по формуле:

Qk = W – N = 7,7 – 2,5 = 5,2 кВт.

L = 5200 / 35 = 148.5 м (приблизительно).

Исходя из того факта, что укладывать контур длиной более 100 м нерационально из-за чрезмерно высокого гидравлического сопротивления, принимаем следующее: коллектор теплового насоса будет состоять из двух контуров – длиной 100 м и 50 м.

Площадь участка, который необходимо будет отвести под коллектор, определим по формуле:

S = L x A,

Где А – шаг между соседними участками контура. Принимаем: А = 0,8 м.

Тогда S = 150 x 0.8 = 120 кв. м.

Окупаемость теплового насоса

Когда речь заходит о том, за сколько времени человек сможет вернуть свои деньги, вложенные в что либо, то имеется ввиду насколько выгодно было само вложение. В сфере отопления все довольно трудно, так как мы обеспечиваем себе же комфорт и тепло, и все системы дорого обходятся, но в таком случае можно поискать такой вариант, который бы вернул потраченные средства путем снижения затрат при использовании. И когда начинаешь искать подходящее решение, сравниваешь всё: газовый котел, тепловой насос или электрокотел. Мы разберем, окупаемость какой системы будет быстрее и эффективнее.

Понятие окупаемости, в данном случае внедрения теплового насоса для модернизации действующей системы теплоснабжения, если просто, можно объяснять так:

Есть одна система — индивидуальный газовый котел, который обеспечивает автономное отопление и ГВС. Имеется кондиционер типа сплит-системы, который обеспечивает холодом одну комнату. Установлено 3 сплит-системы в разных помещениях.

И есть более экономичная передовая технология – тепловой насос, который будет отапливать/охлаждать дома и нагревать воду в нужных количествах для дома или квартиры. Необходимо определить, насколько изменилась общая стоимость оборудования и начальных затрат, а также оценить на сколько уменьшились годовые затраты на эксплуатацию выбранных видов оборудования. И определить, за сколько лет при полученной экономии окупится более дорогое оборудование. В идеале сравниваются несколько предлагаемых проектных решений и выбирается наиболее экономически выгодный.

Проведем расчет и выяским, какой срок окупаемости теплового насоса в Украине

Виды тепловых насосов для отопления дома

Рассмотрим конкретный пример

  • Дом в 2 этажа, хорошо утеплен, общей площадью 150 м кв.
  • Система разводки тепла / отопления: контур 1 – теплый пол, контур 2 – радиаторы (или фанкойлы).
  • Установлен газовый котел для отопления и горячего водоснабжения (ГВС), например 24кВт, двухконтурный.
  • Система кондиционирования из сплит-систем для3-х помещений дома.

Годовые затраты на отопление и нагрев воды

Виды тепловых насосов для отопления дома

Макс. теплопроизводительность ТН для отопления, кВт 19993,59
Макс. потребляемая мощность ТН при работе на отопление, кВт 7283,18
Макс. теплопроизводительность ТН для ГВС, кВт 2133,46
Макс. потребляемая мощность ТН при работе на ГВС, кВт 866,12

Виды тепловых насосов для отопления дома

  1. Ориентировочно стоимость котельной с газовым котлом 24 кВт (котел, обвязка, разводка, бак, счетчик, монтаж) составляет около 1000 Евро. Система кондиционирования воздуха (одна сплит-система) для такого дома будет стоить около 800 евро. Суммарно с обустройством котельной, проектными работами, подключением к сети газопровода и монтажными работами – 6100 евро.
  1. Приблизительная стоимость теплового насоса Mycond с дополнительной системой фанкойлов, монтажными работами и подключением к электросети — 6650 евро.
  1. Рост капиталовложений составляет: К2-К1 = 6650 – 6100 = 550 евро (или около 16500грн.)
  2. Снижение эксплуатационных затрат составляет: С1-С2 = 27252 – 7644 = 19608 грн.
  3. Срок окупаемости Токуп. = 16500 / 19608 = 0,84 года!

Удобство использования теплового насоса

Тепловые насосы — самое универсальное, многофункциональное и энергоэффективное оборудование для теплоснабжения дома, квартиры, офиса или коммерческого объекта.

Интеллектуальная система управления с недельным или суточным программированием, автоматическим переключением сезонным настроек, поддержанием температуры в дома, экономных режимов, управлением подчиненным котлом, бойлером, циркуляционными насосами, контролем температур в двух отопительных контурах, является наиболее совершенной и передовой. Инверторное управление работой компрессора, вентилятора, насосов, дает возможность максимальной экономии энергопотребления.

Работа теплового насоса при работе по схеме грунт-вода

Укладку коллектора в грунт можно произвести тремя способами.

Горизонтальный вариант

Виды тепловых насосов для отопления домаТрубы укладываются в траншеи «змейкой» на глубину, превышающую глубину промерзания грунта (в среднем – от 1 до 1,5 м).

Для такого коллектора потребуется участок земли достаточно большой площади, но зато его может построить любой домовладелец – никаких навыков, кроме умения работать лопатой, не понадобится.

Следует, правда, учесть, что сооружение теплообменника ручным способом – довольно трудоемкий процесс.

Вертикальный вариант

Трубы коллектора в виде петель, имеющих форму литеры «U», погружаются в скважины глубиной от 20 до 100 м. При необходимости можно построить несколько таких скважин. После установки труб скважины заливают цементным раствором.

Достоинство вертикального коллектора состоит в том, что для его строительства нужен совсем небольшой участок. Однако, пробурить скважины глубиной более 20 м самостоятельно нет никакой возможности – придется нанимать бригаду бурильщиков.

Комбинированный вариант

Виды тепловых насосов для отопления домаЭтот коллектор можно считать разновидностью горизонтального, но для его строительства потребуется гораздо меньше места.

На участке выкапывается круглый колодец глубиной от 2-х м.

Трубы теплообменника укладываются спиралью, так что контур представляет собой как бы вертикально установленную пружину.

По завершении монтажных работ колодец засыпают. Как и в случае с горизонтальным теплообменником, весь необходимый объем работ можно произвести своими руками.

Коллектор заполняется антифризом – тосолом или раствором этиленгликоля. Для обеспечения его циркуляции в контур врезается специальный насос. Вобрав в себя тепло грунта, антифриз поступает к испарителю, где происходит теплообмен между ним и хладагентом.

Следует учесть, что неограниченный отбор тепла из грунта, особенно при вертикальном расположении коллектора, может привести к нежелательным последствиям для геологии и экологии участка. Поэтому в летний период ТН типа «грунт – вода» весьма желательно эксплуатировать в реверсивном режиме – кондиционирование.

Газовая система отопления имеет массу преимуществ и одно из главных – низкая стоимость газа. Как обустроить обогрев жилища газом, вам подскажет схема отопления частного дома с газовым котлом. Рассмотрим проект отопительной системы и требования к замещению.

Об особенностях выбора солнечных батарей для отопления дома читайте в этой теме.

Расчет горизонтального коллектора теплового насоса

Эффективность горизонтального коллектора зависит от температуры среды, в которую он погружен, ее теплопроводности, а также площади контакта с поверхностью трубы. Методика расчета достаточно сложна, поэтому в большинстве случаев пользуются усредненными данными.

Виды тепловых насосов для отопления домаСчитается, что каждый метр теплообменника обеспечивает ТН следующую тепловую мощность:

  • 10 Вт – при заглублении в сухой песчаный или каменистый грунт;
  • 20 Вт – в сухом глинистом грунте;
  • 25 Вт – во влажном глинистом грунте;
  • 35 Вт – в очень сыром глинистом грунте.

Таким образом, для расчета длины коллектора (L) следует потребную тепловую мощность (Q) разделить на теплотворную способность грунта (p):

L = Q / p.

Приведенные значения можно считать действительными только при соблюдении следующих условий:

  • Участок земли над коллектором не застроен, не затенен и не засажен деревьями или кустами.
  • Расстояние между соседними витками спирали или участками «змейки» составляет не менее 0,7 м.

Принцип работы тепловых насосов

В любом ТН имеется рабочая среда, именуемая хладагентом. Обычно в этом качестве выступает фреон, реже – аммиак. Само устройство состоит всего из трех компонентов:

Испаритель и конденсатор – это два резервуара, имеющие вид длинных изогнутых трубок – змеевиков. Конденсатор одним концом присоединяется к выходному патрубку компрессора, а испаритель – ко входному. Концы змеевиков стыкуются и в месте соединения между ними устанавливается редукционный клапан. Испаритель контактирует – непосредственно или косвенно – со средой-источником, а конденсатор – с системой отопления или ГВС.

Виды тепловых насосов для отопления дома

Принцип работы теплового насоса

Работа ТН основана на взаимозависимости объема, давления и температуры газа. Вот что происходит внутри агрегата:

  1. Аммиак, фреон или другой хладагент, двигаясь по испарителю, нагревается от среды-источника, допустим, до температуры +5 градусов.
  2. Пройдя испаритель, газ достигает компрессора, который перекачивает его в конденсатор.
  3. Нагнетаемый компрессором хладагент удерживается в конденсаторе редукционным клапаном, поэтому его давление здесь выше, чем в испарителе. Как известно, с ростом давления температура любого газа увеличивается. Именно это происходит с хладагентом – он разогревается до 60 – 70 градусов. Поскольку конденсатор омывается циркулирующим в системе отопления теплоносителем, последний также нагревается.
  4. Через редукционный клапан хладагент небольшими порциями сбрасывается в испаритель, где его давление снова падает. Газ расширяется и остывает, а поскольку часть внутренней энергии была потеряна им в результате теплообмена на предыдущем этапе, его температура опускается ниже изначальных +5 градусов. Следуя по испарителю, он снова нагревается, далее закачивается в конденсатор компрессором – и так по кругу. По-научному этот процесс называется циклом Карно.

Но ТН все-равно остается очень выгодным: за каждый потраченный кВт*ч электроэнергии удается получить от 3 до 5 кВт*ч тепла.

Влияние исходных данных на результат расчета

Воспользуемся теперь построенной в ходе вычислений математической моделью с тем, чтобы проследить за влиянием различных исходных данных на конечный результат расчета. Отметим при этом, что расчеты, выполненные на Excel, позволяют провести такой анализ очень оперативно.

Для начала посмотрим, как влияет на величину теплового потока к ВГТ от грунта его теплопроводность.

Наш пример расчета был выполнен для грунта с теплопроводностью ? = 2,076 Вт/(К • м), и удельный тепловой поток составлял при этом qyд = 41,4 Вт. На рис. 3 показана функция qyд = ?(?) при неизменных прочих условиях расчета.

 Виды тепловых насосов для отопления дома

Известно, что при использовании ВГТ летом в режиме отведения теплоты от холодильных машин системы кондиционирования эффективность грунтовых теплообменников, работающих зимой совместно с тепловым насосом, возрастает. Кривая на рис. 4 показывает характер зависимости удельного теплового потока от грунта к ВГТ зимой от отношения годовой потребности здания в холоде к годовой его потребности в тепле для отопления.

Виды тепловых насосов для отопления дома

В европейской практике при сооружении грунтовых тепловых насосов обычно применяют ВГТ с двумя U-образными полиэтиленовыми трубами, установленными в одной скважине. Математическая модель позволяет оценить эффективность такого технического решения (рис. 5). Значения удельного теплового потока в левом и правом столбиках диаграммы вычислены при значениях эквивалентного диаметра ВГТ, соответствующих конструктивному исполнению теплообменника с одной и с двумя U-образными трубами.

Виды тепловых насосов для отопления дома

Решающее для интенсификации теплообмена в грунте значение имеет разность температур грунта и охлажденного в испарителе теплового насоса гликоля. На рис. 6 представлена зависимость удельного теплового потока от этой разности температур.

Виды тепловых насосов для отопления дома

Следует особо отметить, что рисунки 3…6 отображают не абсолютные величины удельного теплового потока от грунта к ВГТ, а характер изменения этих величин от одного из аргументов, в то время как множество остальных аргументов остаются неизменными, а, точнее, такими, какими они были определены или заданы в примере нашего расчета. Поэтому руководствоваться диаграммами, изображенными на этих рисунках, для вычисления длины ВГТ в конкретных проектах нельзя.

 Виды тепловых насосов для отопления дома

Определять длину вертикальных грунтовых теплообменников рекомендуется по формуле (6).

Источник: mr-build.ru


Leave a Comment

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.