Схемы присоединения систем отопления к тепловым сетям


Нормальная работа элеватора происходит при H/h = 8-12 (H— располагаемый напор на вводе; h — сопротивление системы отопления).

Следует иметь в виду, что значение расчетного напора перед элеватором прямо пропорционально сопротивлению системы отопления. Поэтому увеличение сопротивления системы отопле­ния, например, в 1,5 раза вызовет увеличение расчетного напора Я также в 1,5 раза.

Присоединение с насосом на перемычке (в). В том случае, если смешение воды не может быть выполнено с помощью эле­ватора, устанавливают насос на перемычке между подающим и обратным трубопроводами системы отопления. Смешение с по­мощью элеватора не может быть выполнено по следующим при­чинам: напор в месте присоединения недостаточен для нормаль­ной его работы; потребная тепловая мощность смесительного узла велика и выходит за пределы мощности изготовляемых элеваторов (обычно больше 0,8 МВт — 0,7 Гкал/ч).


При установке смесительных насосов в жилых и общественных зданиях рекомендуется применять бесшумные бесфундаментные насосы. При установке смесительных насосов, рассчитанных на большую подачу, применяют в качестве смесительных насосов центробежные типа К и КМ. Подача насоса равна G2=1.1G1, а на­пор должен быть равен H = 1.15h (где h — сопротивление системы отопления).

Присоединение с насосом на подающем трубопроводе системы отоп­ления (г). Насос на подающем трубопроводе устанавливают в том случае, если наряду со смешением воды требуется повысить давление в подающем трубопроводе в месте присоединения системы отопления (статическая высота системы отопления выше давления в подающем трубопроводе в месте присоединения).

Подача насоса равна G3 = 1,1 (1 + U)G1,а напор должен быть равен:

Hнас=1.15h+hn

где h — сопротивление системы отопления; hn — разность между статической высотой системы отопления и пьезометрической высотой в подающем трубопроводе тепловой сети в месте при­соединения, м.

Присоединение с насосом на обратном трубопроводе системы отопления (д). Насос на обратном трубопроводе устанав­ливают в том случае, если наряду со смешением воды требуется снизить давление в обратном трубопроводе в месте присоединения системы отопления (давление больше допустимого для системы отопления). Подача насоса в этом случае равна С3 = 1,1 (1 + U)G1 а напор должен иметь значение, обеспечивающее требуемое дав­ление в обратном трубопроводе.


Независимое присоединение (е). Если давление в обрат­ном трубопроводе в тепловой сети выше допустимого давления для системы отопления, а здание имеет значительную высоту или расположено на высоком месте по отношению к рядом стоящим зданиям, то систему отопления присоединяют по независимой схеме.

По независимой схеме допускается присоединять здания вы­сотой 12 этажей и более. Независимая схема основана на отделе­нии системы отопления от тепловой сети с помощью теплообмен­ника, вследствие этого давление в тепловой сети не может пере­даваться теплоносителю системы отопления. Циркуляция теплоносителя осуществляется с помощью циркуляционных на­сосов типа К и КМ. Подачу насоса определяют по формуле

G=Q/C(T11-T22)

где Q — мощность системы отопления, кДж/ч (Гкал/ч); С — теп­лоемкость воды, Дж/(кг·ч); T11,T22 — расчетная температура воды соответственно в подающем и обратном трубопроводах системы отопления, °С


Потребный напор насоса должен быть равен Н = 1ДМ {пш к—сопротивление системы отопления). При выборе напора сле­дует стремиться к минимальному запасу в расходе и напоре. В про­тивном случае из-за повышенных расходов воды в системе отоп­ления (скорость выше допустимой) возникает шум. Независимую систему отопления, как правило, оборудуют расш ирительным со­судом. Утечки воды из системы отопления восполняются из сети автоматически по уровню воды в расширительном баке.

Источник: ros-pipe.ru

ВОДЯНЫЕ СИСТЕМЫ ТЕПЛОСНАБЖЕНИЯ

Схема присоединения систем отопления к тепловым сетям зависит от: необходимости снижения потенциала на вводе; располагаемого перепада давлений на вводе; давления в обратной магистрали тепловой сети в точке присоединения системы отопления.

1. Непосредственное присоединение системы отопления к тепловой сети.

Без снижения температуры воды к тепловой сети непосредственно присоединяются системы отопления промышленных зданий, в которых по нормам допускается повышенная температура теплоносителя до 150 ºС (рис. 2.1).

Схемы присоединения систем отопления к тепловым сетям


Рис. 2.1. Схема присоединения системы отопления к тепловой сети

2. Присоединение систем отопления через элеватор.

Максимальная температура воды в подающей линии тепловой сети, как правило, равна 150 ºС (СНиП), но в некоторых системах она достигает 170 – 190 ºС. Максимальная же температура воды в местной системе отопления по санитарно-гигиеническим нормам не должна превышать 95 – 105 ºС. Для понижения температуры воды в подающей линии системы отопления применяют элеваторы (рис. 2.2а).

Схемы присоединения систем отопления к тепловым сетям

Рис. 2.2. Схема присоединения системы отопления к тепловой

сети – а, конструктивная схема элеватора – б: 1 – сопло

элеватора; 2 – камера смешения; 3 – горловина

Элеватор выполняет две функции – служит смесителем и побудителем циркуляции в системе отопления. Элеватор был разработан профессором Чаплиным в 20-х годах и с тех пор широко применяется в стране (рис. 2.2б).

Достоинства: простота конструкции и надежность в работе. Коэффициент смешения:

Схемы присоединения систем отопления к тепловым сетям(2.1)

Требуемый коэффициент смешения элеватора обеспечивается при колебаниях давлений на вводе; изменения его очень незначительны.

Недостатки: малый КПД (10-15 %) и невозможность присоединения в концевых участках тепловой сети при малых перепадах давлений, недостаточных для работы элеватора; при аварии в тепловой сети невозможно обеспечить автономную циркуляцию воды в местных системах отопления, что при низких температурах наружного воздуха приводит к сильному выстыванию помещений; постоянное равенство


Схемы присоединения систем отопления к тепловым сетямжестко связывает гидравлический и температурный режимы в местных системах отопления и тепловых сетях. При высоких температурах наружного воздуха (перелом), что не позволяет уменьшать Gтс воды в системе отопления. При постоянном коэффициенте смешения при уменьшении Gтс уменьшается Gпод, следовательно уменьшается Gо, что приводит к разрегулировке систем отопления.

Располагаемый напор перед элеватором:

Схемы присоединения систем отопления к тепловым сетям Схемы присоединения систем отопления к тепловым сетям, м в.ст, (2.2)

где ΔРС – потери давления в системе отоплени, м в.ст.

Если ΔРС = 1 м в.ст, U = 1, следовательно ΔРЭ = 6 м в.ст.

Для устранения недостатков в последние годы разработаны и применяются элеваторы с регулируемым соплом, т.е. элеваторы с переменным регулируемым сечением сопла.

Схемы присоединения систем отопления к тепловым сетям


Рис. 2.3. Конструктивная схема элеватора с регулируемым соплом:

1 – сопло; 2 – камера смешения; 3 – горловина;

4 – регулирующая игла; 5 – исток регулирующей иглы;

6 – механизм для перемещения иглы

Такие элеваторы позволяют в определенных пределах изменять коэффициент подмешивания.

Значительно большие возможности по регулированию системы отопления имеет схема присоединения со смесительными насосами. Насос может быть расположен на подаче, на обратке и на перемычке между Т1 и Т2.

3. Насос на перемычке.

Схемы присоединения систем отопления к тепловым сетямРис. 2.4. Схемы регулирования систем отопления

Насос, установленный на перемычке, забирает воду из обратной линии системы отопления и подает ее на смешение с горячей водой, поступающей из тепловой сети (рис. 2.4а).

При аварийном отключении тепловой сети, насос осуществляет циркуляцию воды в местных системах отопления, чем предотвращает ее замораживание в течении относительно длительного периода (8-12 ч): Gн = Gподм; ΔНн = ΔНАВ

4. Насос на подаче или обратке.

В концевых участках тепловой сети, где обычно применяются схемы присоединения со смесительным насосом, разность напоров не только мала, но и подвержены суточным и сезонным колебаниям. Эти колебания иногда настолько значительны, что могут привести к недополучению необходимого количества сетевой воды и теплоты потребителям. Именно в этих случаях установка насоса на подаче или обратке позволяет при работе насоса получить дополнительную необходимую циркуляцию (рис. 2.4.б).


Большее применение имеет схема с насосом на обратке, т.к. в концевых участках тепловой сети, где наиболее употребимы эти схемы, часто давления в обратной магистрали повышены. Однако в этих случаях следует учитывать возможную остановку циркуляционного насоса и не допускать при этом превышения давления в системе отопления выше рабочего. Если давление в системе отопления при остановке насоса превысит Рраб., надежнее применять независимую систему отопления.

При теплоснабжении высоких зданий или расположенных на высоких отметках местности иногда применяют схему с насосом на подаче (рис. 2.4в), но, как правило, в этом случае следует отдать предпочтение тоже независимой схеме: Gн = Gо.

Наличие насосов в этих схемах позволяет проводить более совершенное регулирование системы отопления.

Для установки допускаются только малошумные бесфундаментные насосы.

Для упрощения и уточнения регулирования системы отопления должны иметь пологую характеристику. В этом случае независимо от количества подаваемой воды из сети система отопления будет работать с постоянным расходом циркуляционной воды, что обеспечит правильное распределение ее по стоякам и нагревательным приборам.


Схемы присоединения систем отопления к тепловым сетям

Рис. 2.4. График работы насоса: 1-характеристика насоса;

2-характеристика сети.

При всех схемах насосного смешения отключение насоса приводит к поступлению в систему отопления горячей воды из тепловой сети, что может привести к ее повреждению. Правда, количество поступающей воды будет небольшим, т.к. потери напора в системе в несколько раз превышают потери напора в перемычке у насоса. Необходимо предусматривать защитное устройство, которое бы полностью отключало систему отопления при полной остановке насосов.

Необходимо устанавливать с рабочим и резервный насос.

Все эти недостатки насосных систем привели к созданию схемы, сочетающей и элеватор и насос (рис. 2.4г).

5. Схема с элеватором и насосом.

В этом случае выход из строя насоса приведет к снижению коэффициента смешения, но не снизит его до нуля, как при схемах с чисто насосным смешением.

Эти схемы могут быть применены, когда разность напоров перед элеватором ΔНЭЛ не может обеспечить необходимый коэффициент смешения, но не менее 5 м.в.ст.

С помощью этой схемы можно осуществить ступенчатое регулирование температуры подаваемой воды в зоне перелома. Длительность переломного периода от 0-10 ºС может достигать 1000 и более часов за отопительный период. Перерасход теплоты на отопление в этот период из-за подачи воды в сеть с температурой 70-75 ºС нежелателен.


Установка насоса на вводе с нормально работающим элеватором позволяет при включении насоса повысить коэффициент смешения, а значит снизить температуру t1 в системе отопления.

6. Схема с регулятором давления.

При проектировании системы отопления встречаются случаи, когда напор в обратной линии тепловой сети оказывается ниже необходимого гидростатического давления для системы отопления.

В этом случае на обратке устанавливают регулятор давления РД (рис. 2.6), который и должен создать необходимый подпор в системе отопления с запасом 5 м (из условия заполнения системы отопления водой в статическом режиме).

Расчетный перепад перед элеватором ΔНЭЛ должен определяться с учетом потерь в регуляторе давления.

Схемы присоединения систем отопления к тепловым сетям

Рис. 2.6. Схема подключения системы отопления к тепловой сети с РД

на обратке

Регулятор давления может предотвратить спуск воды из системы отопления через обратку при остановке тепловой сети. Чтобы полностью сохранить воду в системе отопления на подаче устанавливают обратный клапан.

7. Безэлеваторные системы.

Во всех рассмотренных схемах присоединения системы отопления существует гидравлическая и типовая связь между тепловой сетью и местными системами отопления. Поэтому все эти системы получили название «зависимые».


Основным недостатком зависимых систем является именно гидравлическая связь тепловой сети с нагревательным прибором абонентских установок, которые, как правило, имеют пониженную прочность (механическую), что ограничивает пределы допустимых давлений тепловой сети: чугунные радиаторы – Рдоп = 60 м; стальные радиаторы – Рдоп = 100 м; конвекторы – Рдоп = 160 м. Превышение указанных давлений может привести к авариям.

Это снижает надежность и усложняет эксплуатацию систем теплоснабжения, т.к. при большом протяженности сетей и большом количестве абонентов потери давления в сети колеблются и изменяются в широких пределах. При этом уровень давлений в сети часто превышает допустимый для абонентов.

В тех случаях, когда разность между Рдоп нагревательного прибора и Ррасч в тепловой сети невелика, даже небольшое увеличение давления в обратке тепловой сети может привести к разрыву нагревательных приборов в системе отопления. Поэтому по условиям надежности работы систем теплоснабжения независимая схема присоединения является предпочтительной.

В тех же случаях, когда давление в тепловой сети в статических условиях превышает Рдоп абонентов, применение независимой схемы присоединения является обязательным.

8. Независимая схема присоединения.

Схемы присоединения систем отопления к тепловым сетям

Рис. 2.7. Независимая схема присоединения системы отопления к

тепловой сети: 1 – линия подпитки системы отопления из

обратки тепловой сети

При независимых схемах система отопления присоединяется к тепловой сети через поверхностный подогреватель. Система отопления в этом случае работает под давлением собственного расширительного сосуда. Если система отопления рассчитана на работу с Δt = 105-70 ºС, то во избежании вскипания воды расширительный бак должен быть поднят над системой отопления на 2,5-3 м.

При системе отопления с опрокинутой циркуляцией это можно не предусматривать. Чтобы избежать накипеобразование в водонагревателе, рекомендуется подпитку системы отопления производить из обратной линии тепловой сети (рис. 2.7), в которой циркулирует умягченная и деаэрированная вода.

При нормальной эксплуатации системы отопления утечки воды в ней незначительны, что дает возможность заполнять расширительный бак не чаще 1 раза в месяц. Заполнение расширительного бака производится по перемычке, выполняемой для надежности с двумя кранами.

Основа данной схемы: наличие в схеме подогревателя позволяет осуществить более рациональный режим регулирования отопительной нагрузки. Это целесообразно при наличии в графике центрального регулирования зоны постоянных температур сетевой воды при положительной температуре наружного воздуха. Эта схема позволяет осуществлять регулирование пропусками по сетевой воде, т.к. работа циркуляционного насоса позволяет не прерывать отопление помещений, продолжая его на постепенно уменьшающейся температуре воды.

К недостаткам схемы относятся: а) наличие дополнительного дорогого оборудования: подогреватель, циркуляционный насос, расширительный бак и т.д.; б) увеличение размеров теплового пункта; в) дополнительные расходы на обслуживание и ремонт оборудования; г) увеличенные расходы на электроэнергию; д) увеличение удельного расхода воды в тепловой сети и увеличение Т2 в среднем на 3-4 ºС.

Источник: studopedia.ru

При проектировании систем отопления в качестве теплоносителя в них используют, как правило, воду, температуру которой принимают согласно СНиП. Например, в системах отопления жилых и общественных зданий температура теплоносителя (воды) не должна превышать 95 °С для двухтрубных и 105 °С для однотрубных систем отопления.

Определяющее значение на выбор схемы подключения системы отопления оказывают температурные и гидравлические условия работы тепловых сетей. В зависимости от этого системы отопления присоединяют к тепловым сетям по зависимой или независимой схемам.

В зависимых схемах присоединения теплоноситель в отопительные приборы поступает непосредственно из тепловых сетей. Таким образом, один и тот же теплоноситель циркулирует как в тепловой сети, так и в отопительной системе.

В независимых схемах присоединения теплоноситель из тепловой сети поступает в подогреватель, в котором его теплота используется для нагревания воды, заполняющей местную систему отопления. При этом сетевая вода и вода в местной системе отопления разделены поверхностью нагрева и таким образом сеть и система отопления полностью гидравлически изолированы друг от друга.

При зависимой схеме присоединения гидравлические условия работы тепловых сетей оказывают непосредственное влияние на системы отопления. В этом случае применяется либо непосредственное (если позволяет температурный график работы системы теплоснабжения), либо элеваторное присоединение систем отопления жилых и общественных зданий к тепловой сети ис.2.9). Схемы присоединения систем отопления к тепловым сетям

 

Рис. 2.9. Зависимые схемы присоединения систем отопления к тепловым сетям:
а – непосредственное присоединение; б – элеваторное присоединение; 1 – подающий трубопровод;
2 – обратный трубопровод; 3 – отопительные приборы; 4 – манометр; 5 – термометр; 6 – грязевик;
7 – запорная арматура (задвижка); 8 – воздушник; 9 – сужающее устройство, счетчик жидкости;
10 – элеватор (струйный насос)

 

Зависимое присоединение отопительных установок по схеме рис. 2.9, а применяют, как правило, в системах отопления промышленных предприятий. Такая схема применима также в жилых и общественных зданиях, если температура воды в подающей магистрали теплосети не превышает 95 – 105 °С.

Если температура сетевой воды в подающей магистрали теплосети превышает 105 °С и располагаемый напор на вводе достаточен для работы струйного насоса — элеватора (10 – 15 м вод. ст.), то систему отопления присоединяют к теплосети по схеме, представленной на рис. 2.9, б. В этом случае необходимая температура воды, поступающей в систему отопления, достигается за счет смешения в элеваторе высокотемпературной сетевой воды из подающей магистрали с обратной водой из системы отопления.

При зависимом присоединении качество теплоснабжения во многом зависит от качества изготовления и монтажа элеватора. При изготовлении элеваторов с особой тщательностью следует следить за соосностью сопла и камеры смешения, за качеством обработки внутренних поверхностей сопла и камеры смешения. Невыполнение этих требований может привести к снижению КПД струйного насоса, увеличению потерь напора, засорению сопла элеватора и, как следствие, к нарушению циркуляции в системе отопления.

Преимуществом элеватора как смесительного устройства является простота и надежность эксплуатации.

Основной характеристикой элеватора является коэффициент смешения (коэффициент инжекции), который представляет собой отношение расхода подсасываемой (инжектируемой) элеватором воды, к расходу воды через сопло элеватора.

Потеря напора в сопле элеватора в десятки раз превышает потерю напора в отопительной системе. Поэтому основным сопротивлением местной системы является сопротивление сопла элеватора, которое зависит от его геометрических размеров (диаметра сечения сопла); коэффициент смешения, создаваемый элеватором, является величиной неизменной. При постоянном коэффициенте смешения расход воды в системе отопления изменяется пропорционально расходу сетевой воды через сопло элеватора, т.е. при прекращении подачи сетевой воды в сопло элеватора циркуляция воды в местной системе прекратится.

Избежать этого можно, если установить на абонентском вводе вместо элеватора смесительный насос (рис. 2.10). При аварийном отключении тепловой сети такой насос осуществляет циркуляцию воды в системе отопления, что предотвращает ее замораживание в течение довольно длительного времени (8 – 12 часов).

Схемы присоединения систем отопления к тепловым сетям При необходимости смесительный насос может быть установлен на подающем или обратном трубопроводах системы отопления. В первом случае насос, кроме смешения, выполняет функции повысительного насоса, во втором случае — циркуляционного насоса.

Смесительные насосы устанавливаются, как правило, в местных тепловых пунктах, поэтому к ним предъявляются повышенные требования по виброшумовым характеристикам. Немаловажным критерием подбора смесительных насосов являются также их габаритные размеры.

Преимуществом смесительного насоса перед струйным является повышение надежности работы системы отопления, обеспечение циркуляции воды в системе отопления при недостаточном располагаемом напоре на вводе, возможность автоматического регулирования расхода воды и гидравлической защиты системы отопления.

Достоинством зависимой схемы присоединения является простота и относительно невысокая стоимость абонентских установок по сравнению с независимой схемой. Кроме того, при зависимом присоединении в абонентской установке может быть получен больший, чем при независимом присоединении, перепад температур сетевой воды, что способствует снижению расхода воды в теплосети и, соответственно, уменьшению диаметров трубопроводов теплосети и снижению капитальных затрат в тепловые сети.

Основным недостатком зависимых схем присоединения отопительных установок является влияние гидравлического режима работы тепловых сетей на режим работы системы отопления. Отопительные приборы имеют, как правило, пониженную механическую прочность по сравнению с другими элементами системы теплоснабжения. Например, предел механической прочности чугунных радиаторов составляет 6 кгс/см2, стальных радиаторов – 10 кгс/см2. Превышение этих пределов может привести к авариям в абонентских установках. Низкая механическая прочность отопительных приборов существенно снижает надежность работы и усложняет эксплуатацию крупных систем теплоснабжения, что объясняется наличием большого количества абонентов с разнородной тепловой нагрузкой и протяженных систем транспорта теплоты. Существенным недостатком зависимой схемы присоединения с элеваторным смешением является также невозможность применения местного регулирования тепловой нагрузки системы отопления, так как при изменении расхода сетевой воды через элеватор может произойти прекращение циркуляции воды в системе отопления, опрокидывание циркуляции или опорожнение системы отопления.

Независимое присоединение систем отопления позволяет исключить влияние гидравлического режима теплосети и влияние суточной неравномерности нагрузки горячего водоснабжения на работу систем отопления. Применение независимых схем присоединения обусловлено повышением требований к надежности теплоснабжения, а также все возрастающей долей строительства зданий повышенной этажности. Согласно нормативным документам по независимой схеме допускается присоединять системы отопления и вентиляции зданий с числом этажей 12 и выше, а также при обосновании системы отопления и вентиляции других потребителей теплоты. Независимая схема присоединения системы отопления представлена на рис. 2.11.

Основным элементом независимой схемы присоединения является промежуточный теплообменник – водо-водяной подогреватель, в котором вода, циркулирующая в системе отопления, нагревается до необходимой температуры. В качестве греющей среды в таком теплообменнике используется сетевая вода. Циркуляция воды в системе отопления осуществляется при помощи насоса.

Схемы присоединения систем отопления к тепловым сетям При независимом присоединении систем отопления требуются дополнительные капиталовложения в системы теплоснабжения и несколько усложняется эксплуатация оборудования тепловых пунктов и абонентских установок за счет появления дополнительных элементов: промежуточного теплообменника и циркуляционного насоса. Кроме того, при независимой схеме присоединения система теплоснабжения должна работать по повышенному температурному графику для компенсации недогрева воды в промежуточном теплообменнике.

Несмотря на недостатки, независимая схема присоединения отопительных установок обладает целым рядом преимуществ, основным из которых является существенное повышение надежности работы систем теплоснабжения. В системе теплоснабжения появляется возможность поддерживать уровень давлений, превышающий допустимый по условиям механической прочности отопительных приборов, что очень важно для крупных систем транспорта теплоты. Повышается также надежность работы систем отопления за счет исключения возможности опорожнения. Возможность применения местного регулирования при независимом присоединении позволяет повысить качество работы отопительных установок за счет исключения колебании температуры внутреннего воздуха отапливаемых помещений относительно значений, определенных СНиП и санитарно-гигиеническими нормами.

 

Источник: megaobuchalka.ru

Схемы подключения потребителей к тепловым сетям и схемы разводки трубопроводовНа рис. 1 и 2 даны наиболее часто встречающиеся схемы присоединения систем отопления и горячего водоснабжения с указанием минимума контрольно-измерительных приборов, обеспечивающих нормальную эксплуатацию теплофикационных сетей.

Схему на рис. 1, а применяют, когда пьезометрический напор в обратной магистрали и статический напор в тепловой сети выше высоты местной системы (здания), но не превышает допустимого предела (50 м для старых радиаторов и 60 м — для новых).

Располагаемый напор в сети достаточен для нормальной работы элеватора (больше 10 — 15 м). Но в этом случае регулятор подпора и обратный клапан не устанавливают.

Когда пьезометрический напор в обратной магистрали ниже высоты здания, а остальные условия такие же, устанавливают регулятор давления (подбора) на обратной линии ввода. Когда высота здания выше статического напора в сети и пьезометрического напора в обратной магистрали, устанавливают регулятор подпора на обратной линии и обратный клапан на подающей линии ввода для отключения местной системы от сети при статическом состоянии (защита от опорожнения).

Рис. 1. Схемы присоединения потребителей: а — непосредственное присоединение с элеватором и защитой от опорожнения: 1 — обратный клапан, 2 — грязевик, 3 — задвижка, 4 — регулятор расхода, 5 — элеватор, 6 — вантуз, б — то же, с насосом на перемычке и защитой от опорожнения: 1 — водо- или тепломер, 2 — регулятор давления, 3 — штуцер для манометра, 4 — манометр, 5 — импульсная трубка, 6 — термометр, 7-насос, в — то же, с элеватором и защитой от повышенного давления при статическом состоянии системы, г — то же, с насосом на подающей линии ввода и защитой от опорожнения при статическом состоянии системы, д — то же, с насосом на обратной линии ввода, е — независимое: 1 — реле, 2 — вантуз, 3 — расширительный бак, 4 — водоводяной нагреватель.


Схему на рис. 1,б применяют, когда располагаемый напор в сети недостаточен для работы элеватора, а статический и пьезометрический напоры в обратной магистрали ниже высоты здания.

Схему на рис. 1, в используют, когда пьезометрический напор в обратной магистрали выше высоты здания, но не превосходит допускаемого. Статический напор больше допускаемого рабочего давления для местных систем.

Схему на рис. 1, г применяют, когда высота здания выше пьезометрического в подающей магистрали, а схему на рис. 1,д, когда пьезометрический напор в обратной магистрали выше пьезометрического в подающей магистрали сети (может иметь место при перегрузке тепловой сети), но не выше допускаемого для местной системы. Схема на рис. 1, е пригодна, если пьезометрический напор обратной магистрали выше допускаемого рабочего давления местной системы.

Рис. 2. Схемы присоединения систем горячего водоснабжения: а — параллельное включение нагревателя, б — двухступенчатое последовательное (задвижка а открыта, б — закрыта), в — смешанное (задвижка а открыта, б — открыта) включение нагревателей: 1 — I ступень нагревателя, 2, 4 — циркуляционный насос, 3 — II ступень нагревателям, 5 — нагреватель горячего водоснабжения, 6 — регулятор температуры воды, в — параллельное включение нагревателей с аккумулятором, расположенным внизу, г — непосредственный разбор воды на горячее водоснабжение (открытая система), 1 — бак-аккумулятор, 2 — водомер, 3 — автомат-смеситель

В схемах, показанных на рис. 2, а, б, для поддержания постоянной температуры расходуемой воды (60 °С) установлен регулятор.

В схеме на рис. 2, в предусмотрена установка бака-аккумулятора горячей воды в нижней части здания (возможна его установка и в верхней части). Схему применяют для крупных потребителей горячей воды. Схемы разводки трубопроводов водяной системы отопления зданий приведены на рис. 3.

Схемы разводки трубопроводов водяной системы отопления зданий

Рис. 3. Системы водяного отопления с насосной циркуляцией, вертикальное с попутным движением воды (нагревательные приборы не показаны): а — однотрубное с верхней разводкой, б — двухтрубное с нижней разводкой, с горизонтальной разводкой трубопроводов, в — с ребристыми трубами, г — с радиаторами или панелями, д — с регистрами из гладких труб, I — подающая линия, II — обратная линия, III — воздушная линия, 1 — главный стояк, 2 — стояк, 3 — дренаж, 4 — воронка, 5 — петля, б — задвижка, 7 — вентиль «косва», в — тройник с пробкой, 9 — муфта с пробкой

Паровые системы теплоснабжения сооружают двух типов: с возвратом и без возврата конденсата. Чаще применяют первые.

Системы сбора конденсата делят на закрытые (рис. 4) и открытые (рис. 5).

Рис. 4. Закрытая конденсатосборная установка: 1 — закрытый конденсатосборник, 2 — регулятор давления «после себя», 3 — регулятор давления «до себя», 4 — пароводяной подогреватель, 5 — конденсатный насос, 6 — регулятор уровня, 7 — конденсатоотводчик

Рис. 5. Открытая конденсатосборная установка: 1 — конденсатоотводчик, 2 — водоводяной подогреватель, 3 — поплавок, 4 — конденсатосборник, 5 — конденсатный насос

Избыточное давление в сборных баках закрытых систем составляет от 5 до 50 кПа. В открытых системах давление в сборном баке равно атмосферному. Недостатком открытой системы является поглощение конденсатом воздуха, что приводит к повышенной коррозии конденсатопроводов.

Для уменьшения аэрации конденсата необходимо, чтобы температура конденсата, поступающего в сборный бак, поддерживалась около 100 °С и конденсат вводился под уровень жидкости. Аэрация конденсата уменьшается также сокращением поверхности его контакта с воздухом в баке. Для этого используют поплавок.

Источник: ingsvd.ru

СП 41-101-95 ПРОЕКТИРОВАНИЕ ТЕПЛОВЫХ ПУНКТОВ
Автор Редактор контента   
28.08.2008 г.
 

3 ПРИСОЕДИНЕНИЕ СИСТЕМ ПОТРЕБЛЕНИЯ ТЕПЛОТЫ К ТЕПЛОВЫМ СЕТЯМ

3.1 Присоединение систем потребления теп­лоты следует выполнять с учетом гидравличес­кого режима работы тепловых сетей (пьезомет­рического графика) и графика изменения тем­пературы теплоносителя в зависимости от из­менения температуры наружного воздуха.

3.2 Расчетная температура воды в подаю­щих трубопроводах водяных тепловых сетей пос­ле ЦТП при присоединении систем отопления зданий по зависимой схеме должна принимать­ся равной расчетной температуре воды в по­дающем трубопроводе тепловых сетей до ЦТП, но не выше 150 °С.

3.3 Системы отопления, вентиляции и кон­диционирования воздуха должны присоединяться к двухтрубным водяным тепловым сетям, как правило, по зависимой схеме.

По независимой схеме, предусматривающей установку водоподогревателей, допускается при­соединять. системы отопления 12-этажных зда­ний и выше (или более 36 м); системы отопле­ния, вентиляции и кондиционирования воздуха зданий при гидравлических условиях, изложенных в п. 3.5, а также системы отопления здании в открытых системах теплоснабжения при невозможности обеспечения требуемого качества воды

3.4 Системы отопления зданий следует при­соединять к тепловым сетям:

непосредственно при совпадении гидравли­ческого и температурного режимов тепловой сети и местной системы. При этом следует учитывать требования прил. 11 СНиП 2.04.05-91* и обеспе­чивать невскипаемость перегретой воды при ди­намическом и статическом режимах системы:

через элеватор при необходимости сниже­ния температуры воды в системе отопления и располагаемом напоре перед элеватором, до­статочном для его работы;

через смесительные насосы при необходи­мости снижения температуры воды а системе ото­пления и располагаемом напоре, недостаточном для работы элеватора, а также при осуществле­нии автоматического регулирования системы.

3.5 При присоединении систем отопления и вентиляции к тепловым сетям по зависимой схе­ме для открытой и закрытой систем теплоснаб­жения в соответствии с пьезометрическим гра­фиком следует предусматривать.

а) при располагаемом напоре в тепловой сети перед тепловым пунктом, недостаточном для преодоления гидравлического сопротивления трубопроводов и оборудования теплового пунк­та и систем потребления теплоты после ТП, — подкачивающие насосы на обратном трубопро­воде перед выходом из теплового пункта. Если при этом давление в обратном трубопроводе присоединяемых систем будет ниже статического давления в этих системах, подкачивающий на­сос должен устанавливаться на подающем тру­бопроводе;

б) при давлении в подающем трубопроводе тепловой сети перед тепловым пунктом, недо­статочном для обеспечения невскипания воды (при расчетной температуре) а верхних точках присоединенных систем потребления теплоты, — подкачивающие насосы на подающем трубопро­воде на вводе в тепловой пункт:

в) при давлении в подающем трубопроводе тепловой сети перед тепловым пунктом ниже статического давления в системах потребления теплоты — подкачивающие насосы на подающем трубопроводе на вводе в тепловой пункт и регу­лятор давления «до себя» на обратном трубо­проводе на выходе из теплового пункта;

г) при статическом давлении в тепловой сети ниже статического давления в системах потреб­ления теплоты — регулятор давления «до себя» на обратном трубопроводе на выходе из тепло­вого пункта, а на подающем трубопроводе на вводе в тепловой пункт — обратный клапан;

д) при давлении в обратном трубопроводе теп­ловой сети после теплового пункта ниже стати­ческого давления в системах потребления тепло­ты при различных режимах работы сети (в том числе при максимальном водоразборе из обрат­ного трубопровода в открытых системах водоснаб­жения) — регулятор давления «до себя» на обрат­ном трубопроводе на выходе из теплового пункта;

е) при давлении в обратном трубопроводе тепловой сети после теплового пункта, превы­шающем допускаемое давление для систем пот­ребления теплоты, — отсекающий клапан на по­дающем трубопроводе на вводе в тепловой пункт, а на обратном трубопроводе на выходе из теплового пункта — подкачивающие насосы с предохранительным клапаном;

ж) при статическом давлении в тепловой сети, превышающем допускаемое давление для систем потребления теплоты, — отсекающий кла­пан на подающем трубопроводе после входа в тепловой пункт, а на обратном трубопроводе перед выходом из теплового пункта — предох­ранительный и обратный клапаны,

3.6 К одному элеватору присоединяется, как правило, одна система отопления. Допускается присоединять к одному элеватору несколько сис­тем отопления с увязкой гидравлических режи­мов этих систем.

3.7 Смесительные насосы для систем ото­пления устанавливаются:

а) на перемычке между подающим и обрат­ным трубопроводами при располагаемом напо­ре перед узлом смешения, достаточном для пре­одоления гидравлического сопротивления сис­темы отопления и тепловых сетей после ЦТП, и при давлении в обратном трубопроводе тепло­вой сети после теплового пункта не менее чем на 0,05 МПа выше статического давления в сис­теме отопления:

б) на обратном трубопроводе перед узлом смешения или на подающем трубопроводе пос­ле узла смешения при располагаемом напоре пе­ред узлом смешения, недостаточном для пре­одоления гидравлического сопротивления, ука­занного в подпункте «а», при этом в качестве смесительных насосов могут быть использова­ны подкачивающие насосы, предусматриваемые в соответствии с пп. 3.5,а, б, в, е

3.8 Системы вентиляции и кондиционирова­ния воздуха зданий присоединяются к тепловым сетям:

непосредственно — когда не требуется из­менения расчетных параметров теплоносителя,

через смесительные насосы — при необхо­димости снижения температуры воды в систе­мах вентиляции и кондиционирования воздуха; для поддержания постоянной температуры воды, поступающей в калориферы второго подогрева систем кондиционирования воздуха, а также для обеспечения невскипания воды в верхних точках трубопроводов и калориферов систем вентиля­ции и кондиционирования воздуха (если не ус­тановлены подкачивающие насосы для других систем по п. 3.5,б).

Места установки смесительных насосов для систем вентиляции выбираются аналогично сме­сительным насосам для систем отопления по п. 3.7

3.9 В тепловых пунктах потребителей тепло­ты с зависимым присоединением систем отопле­ния, вентиляции и кондиционирования воздуха, в которых режим теплопотребления не обеспе­чивается принятым на источнике теплоты центральным качественным регулированием отпус­ка теплоты, следует предусматривать корректи­рующие насосы или регулируемые элеваторы, осуществляющие снижение температуры воды после ЦТП или ИТП а соответствии с графиками температур теплоносителя в этих системах. При этом изменение температуры воды производит­ся автоматически регулятором подачи теплоты.

Корректирующие насосы устанавливаются, как правило, на перемычке между подающим и обратным трубопроводами после отбора воды из подающего трубопровода и до отбора воды из обратного трубопровода на водоподогреватели или смесительные устройства горячего во­доснабжения. Периоды работы этих насосов определяются в зависимости от принятого на источнике теплоты графика регулирования от­пуска теплоты, схемы присоединения водоподогревателей горячего водоснабжения, расчетно­го графика температур воды в сетях после ЦТП и расчетных температур внутреннего воздуха в помещениях. Они могут быть также совмещены с подкачивающими насосами, устанавливаемы­ми по п. 3.5.

3.10 В тепловых пунктах потребителей теп­лоты с независимым присоединением систем отопления, вентиляции и кондиционирования воздуха для регулирования в соответствии с рас­четным графиком температуры воды после водоподогревателей следует предусматривать ре­гулятор подачи теплоты на отопление.

Циркуляционные насосы при независимой системе теплоснабжения устанавливаются на обратном трубопроводе от систем отопления, вентиляции и кондиционирования воздуха перед водоподогревателем.

3.11 Общественное здание с тепловым по­током на вентиляцию более 0,5 МВт следует при­соединять к тепловым сетям в ЦТП отдельно от жилых и общественных зданий с тепловым по­током на вентиляцию менее 0,5 МВт каждое. ИТП такого общественного здания должен обеспечи­вать работоспособность всех систем теплопотребления здания.

Предусматривать самостоятельные трубоп­роводы от ЦТП к зданию для присоединения от­дельно систем вентиляции не рекомендуется.

3.12 При присоединении к ЦТП группы зда­ний с независимым присоединением систем ото­пления и вентиляции следует предусматривать установку в ЦТП общего водоподогреватепя.

Расчетная температура воды после водоподогревателя в этом случае должна приниматься в зависимости от радиуса действия тепловых сетей после теплового пункта, как правило, на 10-30 °С ниже принятой в сетях до водоподогревателя со смесительным устройством в ИТП, обеспечивающим требуемое снижение температуры воды в системах отопления.

3.13 Заполнение и подпитку водяных тепло­вых сетей после ЦТП и систем потребления теп­лоты, присоединяемых к тепловым сетям по не­зависимой схеме, следует предусматривать во­дой из обратного трубопровода тепловой сети подпиточным насосом или без него, если дав­ление в обратном трубопроводе тепловой сети достаточно для заполнения местной системы.

При обосновании допускается подпитка ука­занных систем из подающего трубопровода теп­ловой сети с обеспечением защиты этих систем от превышения в них давления и температуры воды, а в открытых системах теплоснабжения — и из системы горячего водоснабжения.

Подпитка водой из водопровода не допуска­ется.

3.14 Схема присоединения водоподогревателей горячего водоснабжения (рис. 1 — 8) в за­крытых системах теплоснабжения выбирается в зависимости от соотношения максимального потока теплоты на горячее водоснабжение Qhmax и максимального потока теплоты на отопление Qomax;

СП 41-101-95 ПРОЕКТИРОВАНИЕ ТЕПЛОВЫХ ПУНКТОВ одноступенчатая схема (рис. 1,7);

СП 41-101-95 ПРОЕКТИРОВАНИЕ ТЕПЛОВЫХ ПУНКТОВ— двухступенчатая схема (рис. 2-6,8).

При этом для схем, указанных на рис. 1 — 6, предусматривается автоматическое ограничение максимального расхода воды из тепловой сети на ввод и регулирование расхода теплоты на отопление.

Схемы, указанные на рис. 7 и 8, применяются при отсутствии регуляторов расхода теплоты на отопление. Для этих схем применяется стабили­зация расхода воды на отопление, осуществляе­мая регулятором перепада давлений (поз. 4).

3.15 В схемах, указанных на рис. 2 и 4 (с ограничением максимального расхода воды на ввод для жилых и общественных зданий с при­соединением их к тепловым сетям через ЦТП и с максимальным тепловым потоком на вентиля­цию Qnmax более 15 % максимального тепло­вого потока на отопление Qomax), при определе­нии максимального расхода воды из тепловой сети на ввод следует исходить из максимальных тепловых потоков на отопление и вентиляцию и среднего теплового потока на горячее водоснаб­жение в средние сутки за неделю отопительно­го периода Qhm . Ограничение подачи теплоно­сителя для этих схем следует выполнять путем прикрытия клапана, регулирующего подачу теп­лоносителя на отопление и вентиляцию.

3.16 В схемах, указанных на рис. 1 и 3 (с ограничением максимального расхода воды на ввод для производственных зданий, а также для общественных зданий с присоединением их к тепловым сетям через ЦТП и с тепловым пото­ком на вентиляцию и кондиционирование воз­духа Qnmax более 15 % максимального теплового потока на отопление Qomax), при определении максимального расхода воды из тепловой сети на ввод следует исходить из максимальных теп­ловых потоков на отопление, вентиляцию и го­рячее водоснабжение: Qhmax-при отсутствии

СП 41-101-95 ПРОЕКТИРОВАНИЕ ТЕПЛОВЫХ ПУНКТОВ

Рис. 1. Одноступенчатая система присоединения водоподогревателей горячего водоснабжения с автоматическим регулированием расхода теплоты на отопление и зависимым присоединением систем отопления в ЦТП и ИТП

1 — водоподогреватель горячего водоснабжения, 2 -повысительно-циркуляционный насос горячего водоснабжения (пунктиром — циркуляционный насос), 3 — регули­рующий клапан с электроприводом, 4 — регулятор перепада давлений (прямого действия), 5-водомер для холодной воды, 6 — регулятор подачи теплоты на отопление, горячее водоснабжение и ограничения максимального расхода сетевой воды на ввод 7-обратный клапан, 8 — корректирующий подмешивающий насос, 9-теплосчетчик, 10-датчик температуры, 11-датчик расхода воды, 12-сигнал ограничений максимального расхода воды из тепловой сети на ввод, 13-датчик давления воды в трубопроводе

СП 41-101-95 ПРОЕКТИРОВАНИЕ ТЕПЛОВЫХ ПУНКТОВ

Рис. 2. Двухступенчатая схема присоединения водоподогревателей горячего водоснабжения для жилых и общественных зданий и

жилых микрорайонов с зависимым присоединением систем

отопления в ЦТП и ИТП

а — схема с самостоятельным регулятором ограничения расхода сетевой воды на ввод, б — фрагмент схемы с совмещением функций регулирования расхода теплоты на отопление, горячее водоснабжение и ограничения расхода сетевой воды в одном регуляторе

1-13-см рис 1, 14 — регулятор ограничений максимального расхода воды на ввод (прямого действия), 14а — датчик расхода воды в виде сужающего устройства (камерная диафрагма), 15-регулятор подачи теплоты на отопление, 16-задвижка, нормально закрытая, 17-регулятор подачи теплоты на горячее водоснабжение (прямого действия)

СП 41-101-95 ПРОЕКТИРОВАНИЕ ТЕПЛОВЫХ ПУНКТОВ

Рис. 3. Двухступенчатая схема присоединения водоподогревателей горячего водоснабжения для промышленных зданий  и

промплощадок с зависимым присоединением  систем

отопления в ЦТП

 1-17-см. рис. 1, 2, 18- сигнал включения насоса при закрытии клапана К-2; 18-регулятор перепада давлений (электронный)

СП 41-101-95 ПРОЕКТИРОВАНИЕ ТЕПЛОВЫХ ПУНКТОВ

Рис. 4. Двухступенчатая схема присоединения водоподогревателей горячего водоснабжения для жилых и общественных зданий и жилых микрорайонов с независимым присоединением систем отопления в

ЦТП и ИТП

1- 19-см. рис. 1-3; 20 — водоподогреватель отопления, 21 — водомер горячеводный, 22- подпиточный насос отопления, 23— регулятор подпитки, 24-предохра­нительный клапан, 25-циркуляционный насос отопления

СП 41-101-95 ПРОЕКТИРОВАНИЕ ТЕПЛОВЫХ ПУНКТОВ

Рис. 5. Двухступенчатая схема присоединения водоподогревателей горячего водоснабжения в ИТП с водоструйным элеватором и автоматическим регулированием расхода теплоты на отопление (пример учета теплоты по водомерам)

 1-25— см. рис. 1- 4; 26— водоструйный элеватор

СП 41-101-95 ПРОЕКТИРОВАНИЕ ТЕПЛОВЫХ ПУНКТОВ

Рис. 6. Двухступенчатая схема присоединения водоподогревателей горячего водоснабжения в ИТП с зависимым присоединением систем отопления и пофасадным автоматическим регулированием расхода теплоты на отопление

1-25-см. рис. 1 — 4

СП 41-101-95 ПРОЕКТИРОВАНИЕ ТЕПЛОВЫХ ПУНКТОВ

Рис. 7. Одноступенчатая схема присоединения водоподогреватепей горячего водоснабжения с зависимым присоединением систем отопления при отсутствии регуляторов расхода теплоты на отопление

 в ЦТП и ИТП

1-21-см. рис. 1-4

СП 41-101-95 ПРОЕКТИРОВАНИЕ ТЕПЛОВЫХ ПУНКТОВ

Рис.8. Двухступенчатая схема присоединения водоподогревателей горячего водоснабжения с зависимым присоединением систем отопления при отсутствии регуляторов расхода теплоты на

отопление в ЦТП и ИТП

1- 21- см. рис. 1-4

СП 41-101-95 ПРОЕКТИРОВАНИЕ ТЕПЛОВЫХ ПУНКТОВ

Рис. 9. Схемы присоединения систем горячего водоснабжения и отопления в ИТП при зависимом (а) присоединении системы

отопления через элеватор (пунктиром — с циркуляционным

насосом) с учетом теплоты по тепломеру и независимом (б) — с

учетом теплоты по водомеру

 126 -см. рис. 1-5; 27 — регулятор смешения горячей воды, 28 — тепломер двухпоточный трехточечный, 29 — дроссельная диафрагма

баков-аккумуляторов на горячее водоснабжение или среднего теплового потока на горячее во­доснабжение, Qhm — при наличии баков-аккумуляторов. В этом случав ограничение подачи теп­лоносителя на ввод следует выполнять путем прикрытия клапана, регулирующего подачу теп­лоносителя на водоподогреватель горячего во­доснабжения.

3.17 Схемы, указанные на рис. 1,2,4, могут применяться также и в ИТП, при этом подающий трубопровод системы вентиляции подключает­ся до клапана, регулирующего подачу теплоты на отопление.

3.18 На рис. 5 и 6 приведены двухступенча­тые схемы присоединения водоподогревателей горячего водоснабжения в ИТП с центральным автоматическим регулированием подачи тепло­ты на отопление с помощью водоструйного эле­ватора с регулирующей иглой и с пофасадным автоматическим регулированием подачи тепло­ты на отопление (см. рис. 6).

Автоматическое регулирование подачи теп­лоты на отопление а ИТП может быть примене­но также для одноступенчатой схемы присоеди­нения водоподогревателей горячего водоснаб­жения по рис. 1

3.19 При применении одноступенчатой схе­мы по рис. 7 перемычка с задвижкой А откры­та в отопительный период при соотношении СП 41-101-95 ПРОЕКТИРОВАНИЕ ТЕПЛОВЫХ ПУНКТОВ< 0.2 (водоподогреватель работает по предвключенной схеме), а перемычка с задвиж­кой 5 предусматривается для работы в летний

период; при соотношении > 1 перемычка с задвижкой А не требуется, и водоподогрева­тель работает в течение всего года по парал­лельной схеме.

При применении двухступенчатой схемы по рис. 8 для жилых и общественных зданий с макси­мальным тепловым потоком на вентиляцию менее 15 % максимального теплового потока на отопле­ние водоподогреватель 2-й ступени в отопитель­ный период работает по перемычке с задвижкой А (по предвключенной схеме), а перемычка с за­движкой Б предусматривается для работы в лет­ний период. При применении этой схемы в произ­водственных зданиях или на группу общественных зданий с тепловым потоком на вентиляцию более 15 % теплового потока на отопление перемычка с задвижкой А в схеме на рис. 8 не предусматрива­ется, водоподогреватель работает в наличии всего года по перемычке с задвижкой Б по сме­шанной схеме.

3.20 Приведенные схемы присоединения потребителей теплоты к тепловым сетям не ох­ватывают всех возможных вариантов. Могут при­меняться также другие схемы присоедине­ния потребителей теплоты к тепловым сетям. обеспечивающие минимальный расход воды в тепловых сетях, экономию теплоты за счет при­менения регуляторов расхода теплоты и огра­ничителей максимального расхода сетевой воды, корректирующих насосов или элеваторов с ав­томатическим регулированием, снижающих температуру воды, поступающей в системы отопления, вентиляции и кондиционирования воздуха.

3.21 При теплоснабжении от котельной мощ­ностью 35 МВт и менее при технико-экономи­ческом обосновании допускается присоединение к тепловым сетям водоподогревателей систем горячего водоснабжения по одноступенчатой схеме (см. рис. 1 и 7) независимо от соотноше­ния тепловых нагрузок систем горячего водо­снабжения и отопления.

3.22 В закрытых системах теплоснабжения при присоединении к тепловым сетям систем го­рячего водоснабжения с циркуляционным тру­бопроводом (см. рис. 1 — 8) должны предусмат­риваться циркуляционные или повысительно-циркуляционные насосы в соответствии с тре­бованиями СНиП 2.04.01-85.

3.23 При двухступенчатых схемах присоеди­нения водоподогревателей систем горячего во­доснабжения с принудительной циркуляцией воды циркуляционный трубопровод рекоменду­ется присоединять к трубопроводу нагреваемой воды между водоподогревателями І и II ступеней, а при параллельной схеме присоединения — к трубопроводу холодной водопроводной воды или к трубопроводу нагреваемой воды между сек­циями водоподогревателя.

3.24 Горячее водоснабжение в открытых сис­темах теплоснабжения должно присоединяться к подающему и обратному трубопроводам двух­трубных водяных тепловых сетей через регуля­тор смешения воды (рис. 9) для подачи в систе­му горячего водоснабжения воды заданной тем­пературы.

Отбор воды для горячего водоснабжения из трубопроводов и приборов систем отопления не допускается.

3.25 В открытых системах теплоснабжения циркуляционный трубопровод системы горяче­го водоснабжения рекомендуется присоединять к обратному трубопроводу тепловой сети после отбора воды в систему горячего водоснабжения (рис. 9, а), при этом на трубопроводе между местом отбора воды и местом подключения цир­куляционного трубопровода должна предусмат­риваться диафрагма, рассчитанная на гашение напора, равного сопротивлению системы горя­чего водоснабжения в циркуляционном режиме.

3.26 В открытых системах теплоснабжения при давлении в обратном трубопроводе тепло­вой сети, недостаточном для подачи воды в сис­тему горячего водоснабжения, на трубопроводе горячей воды после регулятора смешения следу­ет предусматривать повысительно-циркуляционный насос (рис. 9, б). При этом установка диаф­рагмы, предусмотренной п. 3.25, не требуется.

3.27 Горячее водоснабжение для техноло­гических нужд допускается предусматривать из системы горячего водоснабжения для хозяй­ственно-бытовых нужд, если параметры воды в системе хозяйственно-питьевого водопровода удовлетворяют требованиям технологического потребителя, при условии:

наличия горячей воды питьевого качества для технологических процессов;

отсутствия производственного водопровода с качеством воды, пригодным для данного тех­нологического процесса.

3.28 При теплоснабжении от одного тепло­вого пункта производственного или обществен­ного здания, имеющего различные системы пот­ребления теплоты, каждую из них следует при­соединять по самостоятельным трубопроводам от распределительного (подающего) и сборного (обратного) коллекторов. Допускается присо­единять к одному общему трубопроводу систе­мы теплопотребления, работающие при различ­ных режимах, удаленные от теплового пункта более чем на 200 м, с проверкой работы этих систем при максимальных и минимальных рас­ходах и параметрах теплоносителя.

3.29 Обратный трубопровод от систем вен­тиляции присоединяется перед водоподогревателем горячего водоснабжения І ступени.

При этом, если потери давления по сетевой воде в водоподогревателе І ступени превысят 50 кПа, оборудуется перемычка вокруг водопо­догревателя, на которой устанавливаются дрос­сельная диафрагма или регулирующий клапан, рассчитанные на то, чтобы потери давления в водоподогревателе не превышали расчетной ве­личины.

3.30 К паровым тепловым сетям потребите­ли теплоты могут присоединяться: по зависимой схеме — с непосредственной подачей пара в сис­темы теплопотребления с изменением или без изменения параметров пара; по независимой схе­ме — через пароводяные подогреватели.

Использование для целей горячего водоснаб­жения паровых водонагревателей барботажного типа не допускается.

3.31 При необходимости изменения пара­метров пара должны предусматриваться редук­ционно-охладительные, редукционные или охла­дительные установки.

Размещение этих устройств, а также устано­вок сбора, охлаждения и возврата конденсата в ЦТП или в ИТП следует предусматривать на ос­новании технико-экономического расчета в за­висимости от числа потребителей и расхода пара со сниженными параметрами, количества воз­вращаемого конденсата, а также расположения потребителей пара на территории предприятия.

3.32 При проектировании систем сбора и возврата конденсата следует руководствовать­ся требованиями разд. 3 СНиП 2.04.07-86*.

3.33 В тепловых пунктах с установками сбо­ра, охлаждения и возврата конденсата должны предусматриваться мероприятия по использова­нию теплоты конденсата путем:

охлаждения конденсата в водоподогревателях с использованием нагретой воды для хозяй­ственно-бытовых или технологических потреби­телей горячей воды,

получения пара вторичного вскипания в расширительных баках с использованием его для технологических потребителей пара низкого дав­ления.

3.34 В тепловых пунктах, в которые возмож­но поступление загрязненного конденсата, до­лжна предусматриваться проверка качества кон­денсата в каждом сборном баке и на дренажных трубопроводах. Способы контроля устанавливаются в зависимости от характера загрязнения и схемы водоподготовки на источнике теплоснаб­жения паром.

3.35 На трубопроводах тепловых сетей и конденсатопроводах при необходимости поглоще­ния избыточного напора должны предусматри­ваться регуляторы давления или дроссельные диафрагмы.

Содержание
«РќРђРЎРћРЎР«»
«5 ВОДОПОДГОТОВКА»
«Р РђР™РћРќР« ВЕЧНОМЕРЗЛЫХ ГРУНТОВ»

 

« Пред.   След. »

Источник: normativa.ru


Leave a Comment

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.