Расчет тепловой мощности от гелиосистем. Окупаемость солнечного коллектора.


Способ определения мощности коллектора в конкретном регионе

Самым простым и от этого не менее эффективным способом расчета ориентировочного количества энергии, получаемой от солнечного коллектора в определенно взятом регионе, является метод, основанный на использовании данных об среднегодовой солнечной активности в этой местности и площади поглощения устройства. Для оценки полноты обеспечения тепловой энергией солнечным коллектором воспользуемся статистическими данными. Так, в среднем одно домохозяйство требует  2-4 кВт энергии для нагрева горячей воды в день на человека.

Расчет мощности солнечного коллектора

Какие данные нужны для расчета?

Объемы вырабатываемой энергии солнечным коллектором напрямую зависят от нескольких параметров, среди них:

  • уровень солнечной инсоляции в регионе эксплуатации устройства;
  • площадь поглощения прибора;
  • КПД коллектора;
  • угол наклона панелей к солнечному излучению.

Величину солнечной инсоляции для поверхности площадью 1 м² для разных регионов Украины можно найти в интернете (http://utem.org.ua/). Площадь коллектора можно узнать из документации. Величину КПД берем из диапазона 67…85% (для старых моделей – 67%, для современных – до 85%). Принимаем оптимальный угол наклона энергопоглощающей поверхности относительно солнца для своей местности.

Определение мощности солнечного коллектора

Что делать, если значения инсоляции для моего региона нет в таблице?

В случае если найти точную информацию о солнечной активности в вашем районе не удается, можно воспользоваться данными средней инсоляции по регионам Украины (рисунок ниже). Здесь цветом показаны ориентировочные значения энергии, которую можно получить с 1 м² на горизонтальной площадке.

данные средней инсоляции по регионам Украины

Определить уровень солнечной активности для оптимального угла наклона поверхности коллектора можно по соответствующей карте солнечной радиации (рисунок ниже).


Карта солнечной радиации по регионам Украины

Еще один вариант – это воспользоваться эмпирической формулой: количество энергии на горизонтальной площадке умножить на 1,2.

Поглощающая площадь

Возьмем стандартные солнечные коллекторы с вакуумными трубками, имеющие параметры:

  • длина – 1,8 м;
  • внешний диаметр – 0,056 м.

Хорошими поглощающими свойствами обладают вакуумной трубки с трехслойным покрытием (способ нанесения: реактивное DS напыление, материал: композит – нержавеющая сталь, медь, алюминий).

Солнечные коллекторы с вакуумными трубками

В первую очередь проверим соответствие паспортных и реальных значений площади поглощения коллектора. К примеру, в документации на модель, состоящую из 15 вакуумных трубок, указывается величина поглощающей площади – 2,35 м². Так как трубка имеет форму цилиндра, то площадь ее боковой поверхности определим по известной формуле:

S = π х H х D,

где H – высота трубки, м;
D – диаметр трубки, м;
π = 3,14.

S = 3,14 х 1,8 х 0,056 = 0,3165 м².

После округления получаем площадь одной трубки равна 0,32 м², соответственно всех 15 трубок составит – 0,32 х 15 = 4,8 м².


Расчет мощности солнечного коллектора

Дело в том, что стеклянные трубки коллектора способны преобразовывать солнечную энергию в тепло всей своей поверхностью, но эффективнее всего данное преобразование происходит на освещенной стороне коллектора. Поэтому для определения площади поглощения необходимо разделить общую площадь стеклянных трубок на 2. Итого: 4,8 / 2 = 2,4 м².

Паспортная величина площади поглощения, как уже отмечалось, составляет 2,35 м². Это объясняется тем, что производитель указывает данную величину с учетом факторов, снижающих светопоглощающую способность изделия (часть трубки закрывается фиксатором – крепежом к раме, а еще определенная часть вставляется в бак коллектора).

Расчет мощности солнечного коллектора

Добрый день, уважаемые читатели. Хотим поделиться расчетом выделения тепла солнечными установками.


Солнечная инсоляция — это облучение поверхностей солнечным светом, поток солнечной радиации на поверхность; облучение поверхности или пространства параллельным пучком лучей, поступающих с направления, в котором виден в данный момент центр солнечного диска.

Для примера рассмотрим плоские солнечные панели Vaillant VFK 135/2 VD (Германия). Площадь (абсорбер) одно коллектора 2,33 м2. Сколько тепла можем получить от одного коллектора? Для этого нам нужно знать КПД панели и солнечную инсоляцию в данный период времени. Существует таблица, в которой разбито по месяцам средняя солнечная инсоляция в сутки на 1 м2 площади поверхности.

Расчет тепловой мощности от гелиосистем. Окупаемость солнечного коллектора.

Берем декабрь — самый наименьший показатель инсоляции в году 1,86 кВт*ч/сутки. Коэффициент КПД одной панели Vaillant VFK 135/2 VD — 78,5%. Следовательно одна панель в декабре месяце (в среднем) 1,86*2,33*0,78=3,38 кВт*ч/сутки. (1,86 кол-во инсоляции в декабре, 2,33 площадь абсорбер солнечной панели, 0,78 КПД солнечной панели).


Теперь приведем пример в июле месяце. 6,28*2,33*0,78=11,41 кВт*ч/сутки. В июле продолжительность солнечного дня составляет 15 часов, 11,41/15=0,76 кВт/час. Для примера этой мощности хватит, что бы нагреть два бойлера по 100 литров при входной температуре 15 градусов до 65 градусов за 16 часов, тем самым обеспечить ГВС (горячим водоснабжением) семью из 3-4 человек.

Окупаемость солнечных коллекторов. Чем выше вклад установки в потребление тепловой мощности потребителем, тем меньше ее срок окупаемости. В основном это коттеджи, гостиницы, санатории, пансионаты и пр. объекты, где большой расход тепловой энергии на нагрев воды, подогрев бассейна, поддержка существующей системы отопления. Для примера возьмем гостиницу на 15 номеров с потреблением воды (50 градусов) 2500 л/сутки. 50 человек по 50 литров горячей воды.

Проведем расчет количества тепла (Q) для нагрева воды от текущей температуры (tт) до заданной (tз). Формула Q = G х Ro х C х (tт — tз) — 2,5*1000*1(50-15)=87500 ккал (2,5 м3 воды, 1000 плотность воды кг/м3, 1 удельная теплоемкость воды, 50 температура нагретой воды, 15 начальная температура воды). Переведем ккал в кВч (1000 ккал = 1,16 кВч). 87,5*1,16=101,5 кВч. Для нагрева 2500 литров воды с 15 до 50 градусов потребуется затратить 101,5 кВч. Исходя из объектов, где используются солнечные панели с таким потреблением воды, рассчитаем их окупаемость. 10 панелей по 2,33 м2 площади абсорбера, получаем общую площадь 23,3 м2. Считаем количество тепла, в сезонное время (апрель-сентябрь). Приводим максимальное значение (условия полное потребление 2500 литров горячей воды в день). 23,3*0,78*4,58=85,37 кВч (Апрель) 23,3*0,78*5,51=100,13 кВч (Май) 23,3*0,78*5,89=107,04 кВч (Июнь) 23,3*0,78*6,28=114,13 кВч (Июль) 23,3*0,78*5,62= 102,13 кВч (Август) 23,3*0,78*4,75 = 86,32 кВч (Сентябрь).

Обратите внимание!

Расчет тепловой мощности от гелиосистем. Окупаемость солнечного коллектора.

По диаграмме видно, что 10 панелей способны обеспечить пиковую нагрузку на протяжении летнего сезона, апрель и сентябрь вряд ли будут нуждаться в пиковых нагрузках на приготовление горячей воды, а если все таки потребуется, есть альтернативный источник тепла к примеру электрический котел. Итого за 6 месяцев суммарно нагревая 2500 литров воды с 15 до 50 градусов каждый день солнечная установка из десяти способна выработать до 17300 кВт тепловой энергии в курортный сезон.

Рассчитаем на примере подогрева воды электричеством, 1 кВт возьмем для примера стоимостью 5 руб. Итого за сезон мы бы затратили/сэкономили 17300*5=86500 руб. Что бы рассчитать окупаемость, нужно взять стоимость установки в целом, включая материалы для монтажа, стоимость работ. У каждого производителя солнечных гелиоколлекторов свои нюансы, и своя стоимость. Далее стоит поделить сумму вложения установки на 86500 и получим кол-во лет, за которые она полностью окупится. Сумма вложений 800 тыс рублей, окупаемость = 9 лет.


collector rashet

Установка вакуумного солнечного коллектора – выгодная инвестиция в будущее своей семьи. Круглогодичный доступ к горячей воде, бесплатная энергия для отопления дома, независимость от работы коммунальных служб и отсутствие перебоев в горячем водоснабжении – преимущества, которые особенно ощутимы в холодное время года.

Факторы влияния на работу вакуумного коллектора

Для того чтобы вакуумные коллектора эффективно функционировали и приносили пользу по назначению, необходимо точно рассчитать и подобрать всю комплектацию оборудования для решения той или иной задачи. Недостаточная производительность коллекторов приведет к нехватке тепловой энергии для отопления дома, бани, теплицы и других сооружений, подогрева воды для ежедневного использования или для наполнения бассейна. Установка коллекторов избыточной мощности не только не рациональна с точки зрения лишних финансовых затрат , но и может вызвать дополнительную нагрузку на систему в летний период, когда потребности в энергии снижаются, а активность солнца возрастает. Необходим некий оптимальный вариант и, поэтому, расчет и подбор комплекта оборудования на основе солнечных коллекторов следует доверить специалистам, так как на дальнейшую эффективность работы такой системы влияет немало факторов.


При подборе гелиоустановки важно учитывать следующие данные:

1) Уровень инсоляции (солнечного излучения) в той географической точке и те месяцы, в которые рассчитывается эксплуатация оборудования;
2) КПД коллектора (зависит от типа установки; для вакуумных солнечных коллекторов коэффициент, в среднем, колеблется в пределах 67-80%. Для большей достоверности рекомендуется ориентироваться на минимальный результат);
3) Угол наклона коллектора (от данного показателя зависит количество солнечной энергии, которую поверхность коллектора будет поглощать в течение светового дня. Необходимый угол наклона, под которым будет установлен коллектор, индивидуален и зависит от региона, географических и климатических особенностей местности);
4) Эффективная площадь поглощения коллектора.
Кроме того, важно учитывать и площадь отапливаемого помещения, хорошо ли оно утеплено или нет, потребляемый объем горячей воды, тип отопительной системы (радиаторы или теплые полы), тип самого коллектора, характер теплоносителя в системе и дополнительные условия, которые влияют на эффективную работу вакуумной гелиоустановки.

Характеристики вакуумных трубок – исходная точка расчета ее мощности


При расчете эффективности применения солнечных коллекторов для целей отопления и ГВС необходимо учитывать характеристики вакуумных трубок. Стандартная вакуумная трубка имеет 1800 мм в длину, внешний диаметр – 58 мм, внутренний – 47 мм. Конструкция двух стеночная.  Цилиндры имеют различную толщину: внешний более прочный – 1,8±0,15мм, внутренний – 1,6±0,15мм. Пространство между стенками заполнено вакуумом (менее 5х10-3 Па) и создает преграду для потерь тепла (принцип работы колбы термоса).
В качестве материала для изготовления применяют боросиликатное стекло. Селективное покрытие на наружной поверхности внутреннего цилиндра – напыление композита из нержавеющей стали, алюминия и меди – способствует улучшенному поглощению солнечного излучения.
Цилиндрическая форма стеклянной трубки при соблюдении основных требований установки обеспечивает более 91% поглощения всей поступившей на поверхность энергии. Теплопотери при этом не превышают 8% (при температуре носителя около 80°C). Коэффициент таких потерь для вакуумной солнечной установки не более 0,6Вт/м2.

Определяем площадь эффективного поглощения

Расчет площади эффективного поглощения солнечного коллектора сделаем на примере популярной модели солнечного коллектора модели SCH-30, имеющей в своем составе 30 вакуумных трубок стандартного типоразмера.


ределив эффективную площадь поглощения одной трубки и умножив ее на 30 получим общую эффективную площадь поглощения коллектора. Площадь поглощения одной трубки – фактически площадь «тени» , создаваемой трубкой при ее освещении солнцем. Это проекция трубки на плоскость , проходящую через ее диаметр. Поскольку диаметр трубки 58 мм или 0,058 м, а длина трубки участвующая в приеме солнца порядка 1600 мм или 1,6 м (общая длина трубки 1800 мм, но верхняя и нижняя ее часть закрыты элементами конструкции и в работе участия не принимают), тогда площадь «тени» составит 0,058 м * 1,6 м = 0,092 м2. А общая эффективная площадь поглощения коллектора 0,092 м2 * 30 шт. = 2,77 м2. Аналогичным образом можно получить, что у коллектора модели SCH-18 (18 вакуумных трубок) эффективная площадь поглощения составит 1,66 м2, у модели SCH-20 (20 вакуумных трубок) – 1,86 м2, а у модели SCH-24 (24 вакуумных трубки) – 2,21 м2.

Расчет вырабатываемой энергии солнечным коллектором

Годовая вырабатываемая солнечным коллектором энергия определяется географической точкой установки коллектора и статистическими данными по годовой солнечной инсоляции в этом регионе. Так, для Москвы и Московской области  показатель солнечной инсоляции за год составляет 1173,7кВт*час/м2. Используя полученное значение эффективной площади поглощения коллектора мы можем  рассчитать вырабатываемую им за год энергию. Так коллектор модели SCH-30 выработает 2,77 м2 * 1173,7 кВт*ч/м2 = 3251,15 кВт*ч, но с учетом кпд=80 % только примерно 2600,0 кВт*ч.

По такому же методу легко произвести расчет производимой вакуумным солнечным коллектором энергии с любым другим количеством трубок. Например, вакуумный коллектор модели SCH-20 (20 вакуумных трубок) выработает за год  1173,7 кВт*ч/м2 * 1,86 м2 * 0,8 =1746,0 кВт*ч.

Беря статистические данные по солнечной инсоляции за месяц можно подсчитать количество вырабатываемой энергии за месяц.

Тем ни менее хочется сказать, что подбор оборудования – процесс сугубо индивидуальный для каждого клиента. Самостоятельный просчет мощности дает лишь весьма приблизительные значения, а риск не учесть один, казалось бы, незначительный фактор, может заметно снизить КПД системы. Доверяя расчет солнечного коллектора профессионалам, легко стать обладателем максимально эффективного оборудования. Но в любом случае все расчеты носят условный характер. Погодный условия на планете меняются, солнечная активность тоже. Данные по солнечной инсоляции носят очень усредненный показатель и год от года могут сильно меняться.

Пример расчета для плоского гелиевого конвертера

Для начала нужно установить, какое количество солнечной энергии попадает на поверхность, установленную перпендикулярно лучам солнца. Известно, что на один квадратный метр поверхности, находящейся за пределами атмосферы, попадает 1367 ватт энергии Солнца.

Проходя через атмосферу, солнечное излучение теряет в мощности от трехсот до пятисот ватт. Поэтому на поверхность Земли в ясную безоблачную погоду в средних широтах на один квадратный метр попадает от 800 до 1000 ватт мощности. Для расчетов принимается среднее значение – 900 ватт. Для упрощения расчетов в качестве модели используется условный солнечный конвертер площадью в один квадратный метр.

Схема тепловых потерь
Схема тепловых потерь плоского солнечного коллектора

Модель коллектора, принятая для расчетов, представляет собой установку, рабочая поверхность которой защищена специальным закаленным противоударным стеклом с антибликовым покрытием. Абсорбер покрыт жаропрочной селективной черной краской. Тем самым обеспечивается практически 100% поглощение тепловой энергии. Тыльная сторона коллектора представляет собой слой теплоизоляции толщиной в десять сантиметров. Теплоизоляция чаще всего выполняется на основе минеральной ваты. Чтобы рассчитать потери тепла, неизбежно возникающие на теневой стороне, необходимо знать коэффициент теплопроводности минеральной ваты. Для легкой минеральной ваты этот коэффициент составляет 0.045.

Для расчета предполагается, что разница температур на лицевой и тыльной сторонах теплоизоляции составляет до 50°. Следовательно, при толщине теплоизоляции десять сантиметров потери тепла составят:

0.045:0.1×50=22.5 Вт

Примерно такие же потери тепла возможны с торцевых поверхностей коллектора и от труб. Таким образом, суммарные потери тепла составят 45 ватт. Для расчета необходимо внести корректировочные поправки на возможную облачность, загрязнение стекла коллектора, налипание посторонних предметов (например, листьев с деревьев). Поэтому в расчете следует принять нижнюю границу значения мощности солнечной энергии, приходящейся на один квадратный метр — 800 ватт на один квадратный метр. В качестве теплоносителя в плоских солнечных конвертерах используется вода. Чтобы нагреть один литр воды на один градус, необходимо затратить энергию в 4200 джоулей, что соответствует мощности в 1.16 ватта.

Зная эти величины, можно рассчитать то количество воды, которое будет нагрето в течение одного часа в условном солнечном коллекторе с рабочей площадью в один квадратный метр:

800 : 1.16 = 689.65

То есть за один час гелиевый коллектор площадью в один квадратный метр сможет нагреть на один градус почти 700 литров воды. Из этого расчета следует, что если необходимо нагревать воду на два, три, десять градусов, то расходуемую мощность необходимо соответственно увеличивать.

800 : (1.16 × 10) = 68.96

Следовательно, чтобы в течение часа нагреть воду на десять градусов, через условный солнечный коллектор нужно пропустить не более 69 литров воды (вес одного литра воды равен одному килограмму). Согласно санитарным правилам и нормам (СанПиН), принятым в 2009 году, температура горячей воды, подаваемой в дома, должна находиться в пределах от +60°С до +75°С.

Как показывает практика, для поддержания комфортных условий среды обитания на одного человека требуется в среднем примерно 50 литров горячей воды в день. Для расчета количества энергии принимаем это значение и верхнее значение температуры — +75°С. Поскольку холодная вода, поступающая в коллектор, имеет начальную температуру порядка +10°С, мы получаем ту разницу температур, на которую необходимо нагреть воду:

75 – 10 = 65

Коллектор следует расположить таким образом, чтобы угол наклона его примерно соответствовал географической широте местности, а ориентация была бы на юг. Возможны небольшие отклонения на юго-восток или юго-запад.

Для определения количества тепла, необходимого для нагрева 50 литров воды на 65°, применима формула:

W = Q × V × Tp = 1,16 × 50 ×65 = 3770 (ватт энергии)

Теперь остается вычислить площадь гелиевого коллектора. По таблицам метеорологов для данной конкретной местности следует уточнить то количество энергии Солнца, которое получает здесь один квадратный метр поверхности. Для нашего расчета это значение принято 800 ватт. Разделив вычисленное значение W количества энергии на 800 ватт, мы получим искомую площадь коллектора:

3770 : 800 = 4.71 (квадратных метров)

Это значение соответствует значению площади гелиевого коллектора, который обслуживает одного человека. Для нагрева воды для двух, трех или более человек эту площадь следует увеличить в соответствующее число раз. При стандартных размерах рабочей площади в 2.0 м² — 2.2 м² для нагрева воды на семью из трех человек необходимо установить шесть плоских солнечных коллекторов.

Аналогичным образом производится расчет площади и количества гелиевых коллекторов для организации отопления. Единственное, на что нужно будет сделать поправку, так это на объем теплоносителя, так как в данном случае его потребуется больший объем.

Графический метод расчета системы горячего водоснабжения

Поскольку для определения количества оборудования, которое необходимо приобрести для организации солнечного нагрева воды и подачи ее в дом, особая точность не требуется, многие изготовители и поставщики систем горячего водоснабжения разработали собственные методики расчета, воплотив их в простейшие графики.

По таким графикам любой потенциальный покупатель может самостоятельно определить свои потребности в тех или других компонентах системы нагрева воды. Ниже приведен один из таких графиков. Чтобы определиться с составом оборудования, необходимо выполнить несколько последовательных шагов.

Графическое определение состава оборудования
Графическое определение состава оборудования для горячего водоснабжения

  1. Определить количество постоянных потребителей.
  2. Задать примерный объем расходуемой воды.
  3. На основании этих данных определить рекомендуемый объем бойлера.
  4. Задать оптимальную степень замещения суточных потребностей в тепле на энергию солнца.
  5. Выбрать грубо («Север» — «Юг») вашего месторасположения.
  6. Определить предполагаемую ориентацию гелиевых коллекторов.
  7. Задать угол наклона коллекторов по отношению к горизонту.

Выполнив эти действия, вы получите примерный состав оборудования, которое необходимо для удовлетворения ваших потребностей в горячей воде, а именно объем бойлера, количество коллекторов. А уж за вами остается решение, как именно использовать это оборудование – в качестве основной или вспомогательной системы горячего водоснабжения.

Зная состав системы ГВС, можно легко рассчитать стоимость всех компонентов, а также приблизительно рассчитать сроки окупаемости этого оборудования.


Использованные источники

  1. stroitel.lg.ua/poleznye-stati/otoplenie-i-gazosnabzhenie/raschet-moshhnosti-solnechnogo-kollektora/description.html
  2. zen.yandex.ru/media/id/5d5f98d95ba2b500adcf9075/raschet-teplovoi-moscnosti-ot-geliosistem-okupaemost-solnechnogo-kollektora-5d76057335c8d800ae947704
  3. du-alex.ru/solnechnye-kollektory/277-raschet-solnechnogo-kollektora-snizhaem-vozmozhnye-riski
  4. forumhouse.ru/threads/40682/
  5. solarb.ru/raschet-solnechnogo-kollektora-dlya-gvs

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.