Расчет теплопотерь трубопровода


Трубы в системах отопления, а также холодного и горячего водоснабжения, независимо от материала, из которого они сделаны, подвержены температурным удлинениям и сокращениям. Чтобы найти величину линейного изменения длины трубопроводов при их расширении и сужении выполняется расчет. Если им пренебречь и не установить необходимые компенсаторы, то, при открытой прокладке трассы, трубы могут провиснуть или даже станут причиной выхода из строя всей системы. Поэтому расчёт температурных удлинений трубопроводов обязателен и требует профессиональных знаний.

В данной части учебного курса «Системы водоснабжения и шумопоглощающей канализации», при участии специалиста компании REHAU, расскажем:

  • Почему нужно учитывать температурные удлинения трубопроводов.
  • Как рассчитать прогиб трубопровода при температурном удлинении.
  • Как рассчитать и смонтировать плечо компенсатора температурных удлинений.
  • Как компенсировать температурные деформации полимерных трубопроводов.
  • Какие полимерные трубопроводы лучше всего использовать при открытой водопроводной и отопительной разводке.

Необходимость расчета температурных удлинений трубопроводов из полимерных материалов

Температурные удлинения или сокращения трубопроводов происходят под влиянием изменения рабочей температуры, перемещаемой по ним воды, а также температуры окружающей среды. Соответственно, при монтаже нужно обеспечить достаточную степень свободы трубопроводов, а также рассчитать необходимые допуски на увеличение их длины. Часто начинающие застройщики не учитывают эти изменения при монтаже водопроводной и отопительной разводки. Типичные ошибки:

  • Замоноличивание труб холодного и горячего водоснабжения в стяжку пола без использования утеплителя или защитной гофры.
  • Открытая прокладка труб, например, при монтаже радиаторов системы отопления, без использования специальных компенсаторов.

Расчет теплопотерь трубопровода Расчет теплопотерь трубопровода

Технология скрытой прокладки трубопроводов в штробах или в стяжке должна обеспечивать возможность компенсации возникающих деформаций без механических повреждений труб и соединительных элементов.


Расчет теплопотерь трубопровода

Отметим, что стяжка выдерживает напряжение без разрушений, т.к. возникающие усилия очень малы и составляют незначительный процент от имеющегося запаса её прочности. Необходимо только проследить, чтобы при заливке стяжки или оштукатуривании стен раствор не попадал внутрь гофротрубы или под теплоизоляцию. Присоединение труб к водоразборной арматуре производится через настенные угольники, которые прочно закрепляются на строительной конструкции или на специальном кронштейне. В результате — осевые перемещения труб в теплоизоляции или защитной гофротрубе, за счет температурных удлинений, не оказывают усилий на узел присоединения. При присоединении трубопроводов к распределительным коллекторам выполняется поворот под 90° на выходе из стяжки или из-под штукатурки.

Расчет теплопотерь трубопровода

Таким образом на узлы присоединения трубопроводов к коллектору будут передаваться усилия от очень коротких участков, которыми можно пренебречь.

При открытой прокладке температурные удлинения полимерных трубопроводов, в частности, трубопроводов из РЕ-Ха, будут очень заметны, т.к. эти трубопроводы имеют большой коэффициент температурного удлинения.

Физический смысл коэффициента температурного удлинения состоит в том, что он показывает, на сколько миллиметров удлинится 1 м трубы при его нагреве на 1 градус.

Обратите внимание!

Эта же величина имеет и обратный смысл, т.е. если трубопровод охладить на 1 градус, то коэффициент температурного удлинения покажет, на сколько миллиметров укоротится 1 м трубопровода.

Коэффициент температурного удлинения – это физическая характеристика материала, из которого изготовлен трубопровод.

Расчет температурного удлинения трубопроводов из сшитого полиэтилена РЕ-Ха

Температурные удлинения или сокращения трубопроводов происходят из-за изменения рабочей температуры циркулирующей по ним воды, а также температуры окружающей среды. При открытой прокладке трубопровод должен свободно удлиняться или укорачиваться без перенапряжения материала труб, соединительных деталей и соединений трубопровода. Это достигается за счет компенсирующей способности элементов трубопровода. Например:

  • Правильной расстановкой опор (креплений).
  • Наличием отводов в трубопроводе в местах поворота, других гнутых элементов и установкой температурных компенсаторов.

Устройство компенсаторов необходимо только при значительных линейных удлинениях трубопроводов. Поскольку система должна быть рациональна, то сначала рассчитывается температурное удлинение трубопровода. Возьмём трубопроводы из сшитого полиэтилена РЕ-Ха. Для расчета нам потребуется:

Таб. 1. Коэффициент температурного удлинения и константа материала для водопроводных труб.


Тип трубы Диаметр трубы Коэффициент
температурного удлинения
α мм/м·К
Константа
материала С
Универсальная труба из сшитого полиэтилена РЕ-Ха 16-63 мм
Без фиксирующего желоба
0.15 12
Водопроводная труба из сшитого полиэтилена РЕ-Ха 16-63 мм
Без фиксирующего желоба
0.15 12

Подставляем значения в формулу:

ΔL = L • α • (t макс. раб. – t монтажа) = 10 • 0,15 • (70 – 20) = 75 мм.

Т.е. 10-метровый участок при этом удлинится на 75 мм или 7.5 см. Это приведет к деформации системы и провисанию трубопровода. Данные деформации, прежде всего, нарушают внешний вид системы. Но на значительной длине могут разрушить, прежде всего, крепежные устройства или привести к поломке запорно-регулировочной арматуры или фасонной части. Человеческий глаз способен воспринимать прогиб трубопровода (ΔН), начиная от 5 мм.

Расчет теплопотерь трубопровода

Следующий шаг — расчет величины прогиба (провисания) трубопровода.

Расчет прогиба трубопровода и способы компенсации температурных деформаций полимерных трубопроводов


Зная длину участка между хомутами (L) и его длину при максимальной рабочей температуре (L1), прогиб трубопровода определяется с помощью зависимости:

Расчет теплопотерь трубопровода

Итого, при температурном удлинении трубопровода на 75 мм на 10-метровом отрезке прогиб составит:

Расчет теплопотерь трубопровода

Рассмотрим каждый из этих способов.

Полимерные трубопроводы для устройства современной открытой водопроводной и отопительной разводки

Современные металлополимерные трубопроводы — это труба из сшитого полиэтилена, в которой слой алюминия прочно приклеен к внутреннему самонесущему слою из РЕ-Ха. У таких трубопроводов наименьший коэффициент температурного удлинения, т.к. алюминиевый слой компенсирует температурные удлинения и удерживает внутренний полимерный слой от температурных деформаций.

Коэффициент температурного удлинения металлополимерных трубопроводов – всего 0,026 мм/м·К, что в 5.76 раза меньше, чем у обычных трубопроводов из сшитого полиэтилена.

Обратите внимание!

Температурное удлинение участка металлополимерного трубопровода длиной 10 м при температуре окружающего воздуха (т.е. температуре монтажа 20 °С и максимальной рабочей температуре 70 °С) составит всего:

ΔL = L • α • (t макс. раб. – t монтажа) = 10 • 0,026 • (70 – 20) = 13 мм.

Для сравнения: ранее мы рассчитали температурное удлинение обычного РЕ-Ха трубопровода длиной 10 м, которое составило 75 мм.

Поэтому металлополимерные трубопроводы позиционируются как трубопроводы для открытой прокладки. Но вариант с металлополимерными трубами окажется дороже, т.к. эти трубы стоят больше, чем обычные трубы из сшитого полиэтилена РЕ-Ха.

Заключение

Нельзя игнорировать температурные удлинения трубопроводов из сшитого полиэтилена РЕ-Ха при открытой прокладке водопроводной разводки и монтаже отопительной системы. Для компенсации удлинений следует применять один из вышеперечисленных в статье методов, строго соблюдая рекомендации производителя.

Тепловая труба — это герметическое теплопередающее устройство, которое работает по замкнутому испарительно- конденсационному циклу в тепловом контакте с внешними — источником и стоком тепла.


пловая энергия воспринимается от источника и затрачивается на испарение теплоносителя, заключенного внутри корпуса тепловой трубы. Затем она переносится паром в виде скрытой теплоты испарения и далее, на определенном расстоянии от места испарения, в зависимости от тех или иных способов теплосъема, при конденсации пара выделяется в сток. Образовавшийся конденсат возвращается в зону испарения либо под действием капиллярных сил, которые обеспечиваются наличием специализированной капиллярной структуры (КС) внутри тепловой трубы, либо за счет действия массовых сил (последняя конструкция обычно именуется термосифоном). Таким образом, вместо электронного механизма переноса тепла путем теплопроводности, что имеет место в сплошном металлическом теплопроводе, в тепловой трубе используется молекулярный механизм переноса (иными словами, если говорить более точно — процесс переноса кинетической и колебательной энергии хаотического движения частиц пара).

Тепловые трубы — в первую очередь, это возможность передачи сотен ватт и даже киловатт — скрытая теплота испарения характеризуется очень солидными величинами (тысячами джоулей на грамм вещества). И если испарять массу жидкости порядка нескольких граммов в секунду, то с паром будет переноситься тепловой поток, оцениваемый киловаттами или десятком киловатт. Другая интересная особенность — это возможность концентрации тепловой энергии (системы тепловых труб могут работать в комплексе с большим количеством тепловых источников и гибко конфигурироваться под различные задачи). Непосредственным предшественником тепловой трубы был термосифон (ТС), поэтому, полезно рассмотреть, вначале принцип действия этого устройства (рис.1).


Рисунок 1 – Схема термосифона: 1 – зона испарения; 2 – зона конденсации;

3 – жидкость; 4 – корпус; 5 – пар; 6 – возврат жидкости (конденсат

Внутрь корпуса вводят небольшое количество жидкости, откачивают воздух и герметизируют (запаивают). При подводе тепла к зоне испарения жидкость переходит в пар, давление насыщения паров в этой зоне резко повышается, пар движется вверх в зону с меньшим давлением, конденсируется и стекает по стенкам вниз. Необходимым условием работы является отвод тепла от зоны конденсации. Недопустим также перегрев в зоне испарения — может наступить кризис кипения (вся жидкость испарится) и теплопередача пойдет по стенкам термосифона.

Следует отметить, что термосифон способен обеспечить большую мощность теплопередачи даже при малой разности температур между его концами, т.к. скрытая теплота парообразования у жидкостей велика. Отличительной особенностью этой системы теплопередачи является способ возврата конденсата — под действием гравитационного поля. Поэтому термосифон может работать только тогда, когда зона испарения находится ниже зоны конденсации.

Для обеспечения возврата конденсата в зону испарения при любой ориентации системы теплопередачи потребовалось заменить гравитационное поле каким-то другим, но, желательно, таким же «бесплатным». Это и было осуществлено при изобретении новой системы — тепловой трубы.


Основными конструкционными элементами тепловой трубы являются: герметичный корпус; капиллярная структура; теплоноситель — жидкость, находящаяся внутри корпуса ТТ. Основными материалами, которые применяются для изготовления корпусов ТТ, являются: нержавеющая сталь; медь; алюминий.

Особую важность приобретает также выбор теплоносителя. Основным критерием здесь становятся:

— свойства, влияющие на теплотранспортные характеристики ТТ;

— температурный рабочий диапазон ТТ;

— инертность при взаимодействии с материалом корпуса и капиллярной структуры [1].

Наиболее сложным в конструктивном плане элементом ТТ является капиллярная структура. В современных тепловых трубах наиболее распространены КС, изготовленные на основе металловойлока, порошков и сеток, а также выполненные конструкционным образом, например, в виде канавок различной формы. КС из металловойлока или порошков изготавливаются методом спекания в вакуумных печах (например, чтобы получить медную КС необходимо спекать в вакууме специальные медные волокна при температуре выше 1000°С). Наиболее технологичной является КС, полученная конструкционно — такие КС изготавливаются одновременно с корпусом ТТ.


От КС зависит, насколько эффективно ТТ сможет работать против сил тяжести (когда зона подвода тепла расположена выше зоны отвода тепла). И если в космической технике (работа ТТ в условиях невесомости) этот вопрос совершенно не актуален, то в компьютерной технике он очень важен, ведь установка кулера на плату в современных конфигурациях может быть самой разнообразной. С учетом этого аспекта наиболее предпочтительной является металловолокнистая КС. Порошковые КС также могут обеспечить достаточное функционирование ТТ, но уже только при небольших наклонах. А вот конструкционные КС здесь являются фактически непригодными — их можно рассматривать при работе ТТ либо в качестве термосифона, либо при строго горизонтальном расположении в пространстве.

Что касается путей развития конфигураций ТТ, то одним из наиболее перспективных типов тепловых труб на сегодня является так называемая контурная тепловая труба (КТТ) (рис. 2).

Рисунок 2 — Контурная тепловая труба, принципиальная схема 1 — испаритель; 2 — капиллярный насос (КН); 3 — конденсатор; 4 — компенсационная полость (КП); 5 — паровой канал; 6 — жидкостный канал

Тепловые трубы такой конфигурации имеют следующие преимущества:

— возможность работы, как в условиях микрогравитации, так и в поле сил тяжести при любой ориентации (превышение зоны испарения над зоной конденсации более 1 м), а также против сил ускорения

— передача значительных тепловых потоков (1000 Вт и выше)

— создание гибкой развязки между испарителем и конденсатором

— обеспечение диодности, что позволяет передавать тепло только в одном направлении

— передача тепла на значительные расстояния (6 м и более).

Тепловые трубы в настоящее время исследуются применительно к широкому кругу приложений, при этом был охвачен почти весь возможный диапазон температур, используемых в процессах теплообмена. Область применения тепловых труб простирается до гелиевых температур, где с помощью труб охлаждают мишени в ускорителях частиц до 2000—3000°С. В общем случае можно выделить ряд крупных сфер приложения тепловых труб, каждая из которых как бы иллюстрирует то, или иное свойство тепловой трубы. С помощью тепловых труб можно решать следующие задачи:

1) Обеспечение пространственного разделения источника и стока теплоты. Высокая эффективная теплопроводность тепловой трубы позволяет передавать с ее помощью теплоту на значительные расстояния при малом температурном напоре. Во многих случаях, когда требуется охлаждение отдельных элементов, может оказаться неудобным или нежелательным отвод теплоты с помощью стока или радиатора, расположенных непосредственно у охлаждаемого элемента. Например, отвод теплоты от устройства, выделяющего большую мощность и расположенного внутри модуля, в котором кроме него также находятся другие чувствительные к температуре элементы, целесообразно осуществить с помощью тепловой трубы, соединяющей это охлаждаемое устройство со стоком, расположенным вне модуля. При этом с помощью тепловой изоляции можно свести к минимуму тепловые потери от промежуточных секций тепловой трубы.

2) Второе свойство тепловой трубы — ее способность выравнивать температуру — тесно связано с разделением источника и стока теплоты. Поскольку тепловая труба по своей природе стремится к работе в условиях равномерной температуры, ее можно использовать для снижения градиентов температуры между неодинаково нагретыми участками тела. Таким телом может являться наружная оболочка спутников, одна сторона которой обращена к солнцу, тогда как другая, более холодная, находится в тени. В другом случае цепочки элементов электронных устройств, размещенных на одной и той же трубе, оказываются термически связанными, при этом их температуры выравниваются.

3) Возможность трансформации теплового потока может быть использована в реакторах. Например, в термоионных преобразователях была предпринята попытка трансформировать тепловой поток сравнительно малой плотности, выделяемый радиоактивными изотопами, в тепловой поток большой плотности, достаточной для его эффективного использования в термоионных генераторах.

4) Четвертая функция — регулирование температуры — лучше всего реализуется с помощью тепловой трубы переменной проводимости. Такую тепловую трубу можно использовать для тонкого регулирования температуры устройства, размещенного на ее испарителе.

5) Пятая — тепловые диоды используются в ряде специфических приложений, в которых требуется передача теплоты только в одном направлении [2].

Заключение

Тепловые трубки не потребляют электроэнергию и не шумят. Важно отметить, что тепловая трубка начинает работать при малейшем перепаде температур на ее концах. Это значит, что она будет отводить тепло от процессора, нагревшегося до 70 о С, даже если ее другой конец будет иметь температуру 69 о С.

В настоящее время трудно найти более эффективное устройство для передачи тепловой энергии, чем тепловая трубка. Цилиндрическая тепловая трубка с водой при температуре 50 °С обеспечивает теплопроводность в сотни раз больше, чем у меди. Тепловая труба на литии при температуре 1500 может передавать в осевом направлении тепловой поток мощностью до 25 кВт/см2. Такие трубы используется в ядерных реакторах.

Миллионы тепловых труб работают в энергосберегающих теплообменниках и в промышленных технологических установках. Тысячи тепловых аккумуляторов такого типа отводят тепло из тундрового грунта под Аляскинским нефтепроводом. За счет охлаждения, происходящего в зимние месяцы, слой грунта под нефтепроводом поддерживается замерзшим на протяжении всего лета. Тепловые трубы все шире применяются и в повседневной жизни.

Как рассчитать теплопотери самостоятельно?

Формула расчета теплопотерь трубопровода: Q = (2π × λ × L × (Tвн — Tнар) / ln(D / d) × k

  • π – константа (~ 3,14);
  • λ – коэффициент теплопроводности изоляции, Вт/м°С (см. таблицу ниже);
  • L – длина трубы, м;
  • Tвн – температура жидкости в трубопроводе, °С;
  • Tнар – температура окружающей среды, °С;
  • D – наружный диаметр трубопровода с теплоизоляцией, м;
  • d – внутренний диаметр трубопровода, м;
  • k – коэффициент запаса мощности (1,3).

Коэффициент теплопроводности материалов – таблица по СП 61.13330.2012

Материал Коэффициент теплопроводности, Вт/м°С
Асбестовый матрац, заполненный совелитом 0,087
Асбестовый матрац, заполненный стекловолокном 0,058
Асботкань в несколько слоев 0,13
Асбестовый шнур 0,12
Асбестовый шнур (ШАОН) 0,13
Асбопухшнур (ШАП) 0,093
Асбовермикулитовые изделия марки 250 0,081
Асбовермикулитовые изделия марки 300 0,087
Битумоперлит 0,12
Битумокерамзит 0,13
Битумовермикулит 0,13
Диатомовые изделия марки 500 0,116
Диатомовые изделия марки 600 0,14
Пенопласт ФРП-1 и резопен группы 100 0,043
Пенополиуретан 0,05
Полуцилиндры и цилиндры минераловатные марки 150 0,049
Полуцилиндры и цилиндры минераловатные марки 200 0,052
Совелитовые изделия марки 350 0,076
Совелитовые изделия марки 400 0,078
Фенольный поропласт ФЛ монолит 0,05
Шнур минераловатный марки 200 0,056
Шнур минераловатный марки 250 0,058
Шнур минераловатный марки 300 0,061

Использованные источники

  1. forumhouse.ru/journal/articles/8407-raschet-temperaturnyh-udlinenii-truboprovodov-v-sistemah-vodoprovoda-i-otopleniya
  2. scienceforum.ru/2017/article/2017037209
  3. kalk.pro/heating/heatpipe-heatloss/

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.