Расчет расхода теплоносителя в системе отопления


Комфорт в загородном доме во многом зависит от надёжной работы системы отопления. Теплоотдача при радиаторном отоплении, системе «тёплый пол» и «тёплый плинтус» обеспечивается за счёт движения по трубам теплоносителя. Поэтому правильному подбору циркуляционных насосов, запорно-регулирующей арматуры, фитингов и определению оптимального диаметра трубопроводов предшествует гидравлический расчёт системы отопления.

Данный расчёт требует профессиональных знаний, поэтому мы в данной части учебного курса «Системы отопления: выбор, монтаж», с помощью специалиста компании REHAU, расскажем:

  • О каких нюансах следует знать перед выполнением гидравлического расчёта.
  • Чем отличаются системы отопления с тупиковым и попутным движением теплоносителя.
  • В чём состоят цели гидравлического расчёта.
  • Как материал труб и способ их соединения оказывает влияние на гидравлический расчёт.
  • Каким образом специальное программное обеспечивание позволяет ускорить и упростить процесс гидравлического расчета.

Нюансы, о которых надо знать перед выполнением гидравлического расчёта

В современной системе отопления протекают сложные гидравлические процессы с динамически меняющимися характеристиками. Поэтому на гидравлический расчёт оказывает влияние множество нюансов: начиная от типа системы отопления, вида отопительных приборов и способа их присоединения, режима регулирования и заканчивая материалом комплектующих.

Важно: Трубопроводная отопительная система загородного дома — это сложная разветвлённая сеть. Гидравлический расчет определяет её правильную работу так, чтобы ко всем отопительным приборам поступало необходимое количество теплоносителя. Правильно рассчитать и спроектировать систему отопления может только квалифицированный специалист, имеющий профильное образование по данной дисциплине.

Вне зависимости от того, какая система отопления смонтирована в доме, например, радиаторная разводка или тёплый пол, принцип гидравлического расчёта одинаков для всех, но каждая система требует индивидуального подхода.

Например, система отопления может быть заправлена водой, этилен- или пропиленгликолем, а это повлияет на гидравлические параметры системы.

Важно: вид теплоносителя, который будет циркулировать в системе отопления, определяется заранее. Соответственно: проектировщик при гидравлическом расчёте системы отопления должен учесть его характеристики.


Выбор одно- или двухтрубной системы отопления также влияет на методику гидравлического расчёта.

Это связано с тем, что в однотрубной системе вода последовательно проходит через все радиаторы, и расход через все приборы в расчетных условиях будет единым при различных небольших перепадах температур на каждом приборе. В двухтрубной системе вода через отдельные кольца поступает независимо в каждый радиатор. Поэтому в двухтрубной системе перепад температур на всех приборах будет одинаковым и большим, порядка 20 К, а вот расходы через каждый прибор будут существенно различаться.

При гидравлическом расчете выбирается самое нагруженное кольцо. Оно является расчётным. Все остальные кольца увязываются с ним так, чтобы потери в параллельных кольцах были одинаковыми, с соответствующими им участками главного кольца.

При выполнении гидравлического расчета обычно вводятся следующие допущения:

  1. Скорость воды в подводках не более 0,5 м/с, в магистралях в коридорах 0,6-0,8 м/с, в магистралях в подвалах 1,0-1,5 м/с.
  2. Удельные потери давления на трение в трубопроводах — не более 140 Па/м.

Системы отопления с тупиковым и попутным движением теплоносителя

Отметим, что в системах радиаторной разводки, при едином принципе гидравлического расчёта, существуют разные подходы, т.к. системы подразделяются на тупиковые и попутные.

При тупиковой схеме теплоноситель движется по трубам «подачи» и «обратки» в противоположные стороны. И, соответственно, в попутной схеме теплоноситель движется по трубам в одном направлении.


В тупиковых системах расчет ведётся через дальние — наиболее нагруженные участки. Для этого выбирается главное циркуляционное кольцо. Это самое неблагоприятное направление для воды, по которому прежде всего подбираются диаметры отопительных труб. Все остальные второстепенные кольца, которые возникают в этой системе, должны увязываться с главным. В попутной системе расчёт ведётся через средний, наиболее нагруженный, стояк.

В системах водопровода соблюдается аналогичный принцип. Система рассчитывается через самый удалённый и самый нагруженный стояк. Но есть особенность – в расчёте расходов.

Важно: если в радиаторной разводке расход зависит от количества тепла и перепадов температур, то в водопроводе расход зависит от норм водопотребления, а также от типа установленной водоразборной арматуры.

Цели гидравлического расчета

Цели гидравлического расчета заключаются в следующем:

  1. Подобрать оптимальные диаметры трубопроводов.
  2. Увязать давления в отдельных ветвях сети.
  3. Выбрать циркуляционный насос для системы отопления.

Раскроем подробнее каждый из этих пунктов.

1. Подбор диаметров трубопроводов

Если система разветвлённая – есть короткая и длинная ветка, то на длинной ветке идёт большой расход, а на короткой — меньший. В этом случае короткая ветка должна выполняться из труб меньших диаметров, а длинная ветка должна выполняться из труб большего диаметра.


И, по мере уменьшения расхода, от начала к концу ветки диаметры труб должны уменьшаться так, чтобы скорость теплоносителя была примерно одинакова.

2. Увязка давлений в отдельных ветвях сети

Увязка может производиться подбором соответствующих диаметров труб или, если возможности этого способа исчерпаны, то за счёт установки регуляторов расхода давления или регулировочных вентилей на отдельных ветвях.

Регулировочная арматура может быть разной.

Бюджетный вариант — ставим регулировочный вентиль — т.е. вентиль с плавной регулировкой, который имеет градацию в настройке. Каждый вентиль имеет свою характеристику. При гидравлическом расчёте проектировщик смотрит, какое давление необходимо погасить, и определяется так называемая невязка давлений между длинной и короткой ветками. Тогда по характеристике вентиля проектировщик определяет, на сколько оборотов этот вентиль,  от полностью закрытого положения, надо будет открыть. Например, на 1, на 1.5 или на 2 оборота. В зависимости от степени открытия вентиля будет добавляться разное сопротивление.

Более дорогой и сложный вариант регулировочной арматуры — т.н. регуляторы давления и регуляторы расхода. Это устройства, на которых мы задаём необходимый расход или необходимый перепад давлений, т.е. падение давлений на этой ветке. В этом случае устройства сами контролируют работу системы и, если расход не соответствует требуемому уровню, то они открывают сечение, и расход увеличивается. Если расход слишком большой, то сечение перекрывается. Аналогично происходит и с давлением.


Если все потребители после ночного понижения теплоотдачи одновременно открыли утром свои отопительные приборы, то теплоноситель попытается, в первую очередь, поступать в ближние к тепловому пункту приборы, а до дальних дойдет спустя часы. Тогда сработает регулятор давления, прикрывая ближайшие ветки и, тем самым, обеспечит равномерное поступление теплоносителя во все ветки.

3. Подбор циркуляционного насоса по давлению (напору) и по расходу (подаче)

Если в системе стоит несколько циркуляционных насосов, то в случае их последовательного монтажа у них суммируется напор, а расход будет общим. Если насосы работают параллельно, то у них суммируется расход, а напор будет одинаковым.

Важно: Определив в ходе гидравлического расчёта потери давления в системе, можно выбрать циркуляционный насос, который оптимально будет соответствовать параметрам системы, обеспечивая оптимум затрат – капитальных (стоимость насоса) и эксплуатационных (стоимость электроэнергии на циркуляцию).

Как выбор комплектующих для системы отопления влияет на гидравлический расчёт

Материал, из которого изготовлены трубы системы отопления, фитинги, а также техника их соединения, оказывает существенное влияние на гидравлический расчет.


В местах соединений «фитинг-труба», в зависимости от способа их монтажа, могут быть большие потери, или, наоборот, потери на сопротивление потоку при движении теплоносителя сведены к минимуму.

Например, если используется техника соединения методом «надвижной гильзы», т.е. развальцовывается конец трубопровода, и внутрь вставляется фитинг, то за счёт этого не происходит заужения живого сечения. Соответственно: уменьшается местное сопротивление, и уменьшаются энергетические затраты на циркуляцию воды.

Подведение итогов

Выше уже говорилось, что гидравлический расчёт системы отопления — это сложная задача, требующая профессиональных знаний. Если предстоит спроектировать сильно разветвлённую систему отопления (большой дом), то расчёт вручную отнимает много сил и времени. Для упрощения данной задачи разработаны специальные компьютерные программы.

Добавим, что сейчас при проектировании промышленных и гражданских объектов наметилась тенденция к использованию BIM технологий (building information modeling). В этом случае все проектировщики работают в едином информационном пространстве. Для этого создаётся «облачная» модель здания. Благодаря этому любые нестыковки выявляются ещё на стадии проектировании, и своевременно вносятся необходимые изменения в проект. Это позволяет точно спланировать все строительные работы, избежать затягивания сроков сдачи объекта и тем самым сократить смету.

Источник: www.forumhouse.ru

Содержание


Расчёт делают в первую очередь для определения сопротивления в трубах отопительной системе.

При расчёте гидравлического режима нужно понимать, что функционирование старой (централизованной) программы контроля за отоплением и современной (автономной) имеет значительное различие. И к тому же в современных системах преобладают наиболее качественные материалы. Использование автономного отопления способствует снижению энергопотребления, то есть увеличению экономичности.

Много проблем приносит некачественная установка самого каркаса, поэтому при монтировании и гидравлическом расчёте, необходимо прибегать к помощи специалистов, обладающих нужными знаниями и опытом.

Позаботься об утеплении своего гаража. Читай про утепление с помощью печи буржуйки для гаража.

Расширяй кругозор, узнай, как делается печь отопительно варочная из кирпича

Сделай нужное дело, узнай, как делается установка котлов в частном доме: http://prootoplenie.com/otopitelnoe-oborudovanie/kotlu/chastnuy-dom.html

При монтаже и гидравлическом расчёте учитывают:

  • гидравлическое сопротивление;
  • диаметр труб;
  • тип трубопровода;
  • бесшумность работы системы.

Точное проведение расчёта – это затратное мероприятие, но данные необходимы для дальнейшего надёжного функционирования отопительных систем.

Расчёт циркуляционного сопротивления (измеряется в Па) может быть рассчитан для:

  • отопительной системы, использующей циркуляционный насос (определяют необходимый напор насоса, а затем следует определение диаметра труб);
  • системы, в которых циркуляция происходит из-за разности в плотностях (естественным путём) подающего и обратного трубопроводов (рассчитывается: допустимая скорость воды, циркулирующей в трубах; гидравлическое сопротивление; на последнем этапе – диаметр труб).

Расчет расхода теплоносителя в системе отопления

Циркуляционный насос

Делаем расчет диаметра трубы для отопления, диаметр трубопровода

Нюансы

Выбор труб для систем с естественной циркуляцией и принудительной будет отличаться. При центральной системе диаметр труб рассчитывают в соответствии с отопительными системами квартир. А при автономной, расчет объема трубы, диаметра трубы – возможен различный диаметр в зависимости от:

  • материала изготовления труб;
  • вида циркуляции (осуществляется при помощи насоса либо естественная циркуляция);
  • скорости потока воды;
  • давления воды;
  • разводки системы отопления;
  • типа теплоносителя.

Расчет расхода теплоносителя в системе отопления

Пластиковые трубы отопления

При определении диаметра в первую очередь стоит выбор материала. В зависимости от этого критерия различают:

  • пластиковые трубы (отличаются дешевизной и лёгкостью установки);
  • стальные или медные (высокая цена, сложны в установке);
  • металлопластиковые (внутренняя стенка из пищевого полиэтилена).

Расчет расхода теплоносителя в системе отопления

Стальные трубы для отопления

Стальные трубы всё больше уходят на второй план.

Какой размер лучше, расчет площади трубы

Лучше всего использовать диаметр труб общепринятых размеров, но нужно учесть, что значения различных производителей могут отличаться из-за толщины материала. Чем больше диаметр, тем дороже изделие, поэтому использование труб с большим диаметром целесообразно, если система отопления по протяжённости и имеет много переходов, ответвлений.

Также нужно учитывать размеры стояка. Выбрав диаметр трубы неправильно, вы рискуете вывести из строя систему отопления при начале эксплуатации.

Расчет расхода теплоносителя в системе отопления

Металлопластиковые трубы отопления

При ответе на вопрос: какой диаметр труб отопления выбрать — придерживаются следующих правил:

  1. Очень большой диаметр приводит к низкому давлению воды. Если использовать в небольшом доме, то сбой циркуляции повлечёт за собой нарушение температурного режима.
  2. Слишком маленький – способствует образованию большого давления и появлению шума.
  3. В разных ситуациях необходимо обдуманное использование того или иного диаметра труб.

Алгоритм расчета напора

Главная задача циркуляционного прибора заключается в перекачке жидкости по контуру. Однако разные модели могут пропускать через себя различный объем рабочей среды, поэтому часто приходится пользоваться специальными программами для проведения расчетов.

Чтобы устройство смогло справиться со своим назначением, оно должно преодолеть сопротивление, оказываемое поверхностью трубопроводов. В зависимости от диаметра и материала элементов, его параметры могут существенно меняться. Кроме самих трубопроводов, на падение давление значительное влияние оказывают компоненты регулировочной и запорной арматуры. Наибольшее сопротивление появляется при наличии термостатических приспособлений настройки температурного режима.

Расчет расхода теплоносителя в системе отопления

Представлен насос для обеспечения циркуляции в установленном виде

Формулы вычисления гидравлической потери напора являются достаточно сложными для понимания. Поэтому в представленной программе представлен упрощенный алгоритм расчетов. В конце удается получить результат, но с небольшими погрешностями. Для их нивелирования существует эксплуатационный резерв. Таким образом, применять подобные расчеты вполне реально практически в любых ситуациях.

В калькуляторе имеется всего два поля для ввода исходных данных. В первом из них должна быть указана протяженность трубопроводов отопительной системы. Обязательно отражается общая длина как горизонтальных, так и вертикальных участков. Во втором поле необходимо выбрать тип запорных и регулировочных устройств, ведь применяемая арматура оказывает значительное сопротивление. Требуется указать тот пункт, который больше всего подходит к вашей отопительной системе.

Какие требования к помещениям должны быть соблюдены при установке системы

При монтажных работах самым правильным решением будет, когда трубопровод устанавливается на начальном этапе возведений перекрытий. Такой метод экономичнее радиаторного на 30 – 40 %

Так же возможно установить водяную отопительную конструкцию уже в готовом помещении, но для экономии семейного бюджета, здесь стоит обратить внимание на следующие требования:

  1. Высота потолков должна позволить смонтировать теплые полы толщиной от 8 до 20 сантиметров.
  2. Высота дверных проемов не должна быть меньше 210 сантиметров.
  3. Для монтажа цементно – песчаной стяжки, пол должен быть более прочный.
  4. Во избежание завоздушенности контуров и высокого гидравлического сопротивления, поверхность для основания конструкции должна быть ровной и чистой. Допустимая норма неровности составляет не более 5 миллиметров.

Расчет расхода теплоносителя в системе отопления Расчет расхода теплоносителя в системе отопления

А так же в самом здании или в отдельных комнатах, где будет установлена система отопления, должны быть выполнены  штукатурные работы и вставлены все окна.

Расчет количества и мощности батарей

Как в однотрубном подключение радиаторов отопления, так и в двухтрубных схемах, эффективность отопления конкретного помещения зависит не только от количества секций радиаторов, их конструкции, материала, из которого они изготовлены, площади поверхности и способа подсоединения к магистральному трубопроводу, но и от материала стен и способа утепления, теплопотерь в окнах и пр.

Воспользуемся рекомендованными данными, которые можно найти в специализированной литературе. 1 м3 в кирпичном доме требует приблизительно 0.034 кВт тепла для поддержания комфортной температуры; в доме из СИП – панелей – 0,041 кВт; в кирпичном доме с утепленными: перекрытием, чердаком, несущими стенами, фундаментом – 0,02 кВт.

Для примера, рассмотрим подбор батарей для комнаты 18 м2 с высотой потолков 2,5 м. в кирпичном доме. (0,034 кВт).

  1. Узнаем объем помещения: 18 х 2,5 = 45 м3.
  2. Рассчитываем, сколько необходимо тепловой энергии для данной комнаты: 45 х 0,034 = 1,53 кВт

Теперь нужно воспользоваться таблицей, с характеристиками батарей.

Расчет расхода теплоносителя в системе отопленияНа рисунке показаны основные характеристики наиболее распространенных радиаторов. Исходя из представленных данных, лучшее соотношение характеристик и стоимости у алюминиевых батарей. Нам необходимы данные о мощности одной секции, нижняя граница которой равна 0,175 кВт.

  1. Делим полученный результат на мощность секции выбранного типа радиаторов и получаем количество секций: 1,53/ 0,175 = 8,74

Итог: для обогрева помещения 45 м3 нам необходим алюминиевый радиатор, состоящий из 9 секций. Аналогичные расчеты проведите для каждой комнаты в доме.

Гидравлическая увязка

Балансировка перепадов давления в отопительной системе выполняется посредством регулирующей и запорной арматуры.

Расчет расхода теплоносителя в системе отопленияГидравлическая увязка системы производится на основании:

  • проектной нагрузки (массового расхода теплоносителя);
  • данных производителей труб по динамическому сопротивлению;
  • количества местных сопротивлений на рассматриваемом участке;
  • технических характеристик арматуры.

Установочные характеристики – перепад давления, крепление, пропускная способность – задаются для каждого клапана. По ним определяют коэффициенты затекания теплоносителя в каждый стояк, а затем – в каждый прибор.

Потери давления прямо пропорциональны квадрату расхода теплоносителя и измеряются в кг/ч, где

S – произведение динамического удельного давления, выраженного в Па/(кг/ч), и приведенного коэффициента для местных сопротивлений участка (ξпр).

Приведенный коэффициент ξпр является суммой всех местных сопротивлений системы.

Определение расхода теплоносителя и диаметров труб

Вначале каждую отопительную ветвь надо разбить на участки, начиная с самого конца. Разбивка делается по расходу воды, а он изменяется от радиатора к радиатору. Значит, после каждой батареи начинается новый участок, это показано на примере, что представлен выше. Начинаем с 1-го участка и находим в нем массовый расход теплоносителя, ориентируясь на мощность последнего отопительного прибора:

G = 860q/ ∆t, где:

  • G – расход теплоносителя, кг/ч;
  • q – тепловая мощность радиатора на участке, кВт;
  • Δt– разница температур в подающем и обратном трубопроводе, обычно берут 20 ºС.

Для первого участка расчет теплоносителя выглядит так:

860 х 2 / 20 = 86 кг/ч.

Полученный результат надо сразу нанести на схему, но для дальнейших расчетов он нам понадобится в других единицах – литрах в секунду. Чтобы сделать перевод, надо воспользоваться формулой:

GV = G /3600ρ, где:

  • GV – объемный расход воды, л/сек;
  • ρ– плотность воды, при температуре 60 ºС равна 0.983 кг / литр.

В данных таблицах опубликованы значения диаметров стальных и пластмассовых труб в зависимости от расхода и скорости движения теплоносителя. Если открыть страницу 31, то в таблице 1 для стальных труб в первом столбце указаны расходы в л/сек. Чтобы не производить полный расчет труб для системы отопления частого дома, надо просто подобрать диаметр по расходу, как показано ниже на рисунке:

Расчет расхода теплоносителя в системе отопления

Итак, для нашего примера внутренний размер прохода должен составлять 10 мм. Но поскольку такие трубы не используются в отоплении, то смело принимаем трубопровод DN15 (15 мм). Проставляем его на схеме и переходим ко второму участку. Так как следующий радиатор имеет такую же мощность, то применять формулы не нужно, берем предыдущий расход воды и умножаем его на 2 и получаем 0.048 л/сек. Снова обращаемся к таблице и находим в ней ближайшее подходящее значение. При этом не забываем следить за скоростью течения воды v (м/сек), чтобы она не превышала указанные пределы (на рисунках отмечена в левом столбце красным кружочком):

Расчет расхода теплоносителя в системе отопления

Как видно на рисунке, участок №2 тоже прокладывается трубой DN15. Далее, по первой формуле находим расход на участке №3:

860 х 1,5 / 20 = 65 кг/ч и переводим его в другие единицы:

65 / 3600 х 0,983 = 0.018 л/сек.

Прибавив его к сумме расходов двух предыдущих участков, получаем: 0.048 + 0.018 = 0.066 л/сек и вновь обращаемся к таблице. Поскольку у нас в примере делается не расчет гравитационной системы, а напорной, то по скорости теплоносителя труба DN15 подойдет и на этот раз:

Расчет расхода теплоносителя в системе отопления

Идя таким путем, просчитываем все участки и наносим все данные на нашу аксонометрическую схему:

Расчет расхода теплоносителя в системе отопления

Расчет циркуляционного насоса

Подбор и расчет насоса заключается в том, чтобы выяснить потери давления теплоносителя, протекающего по всей сети трубопроводов. Результатом станет цифра, показывающая, какое давление следует развивать циркуляционному насосу, чтобы «продавить» воду по системе. Это давление вычисляют по формуле:

P = Rl + Z, где:

  • Р – потери давления в сети трубопроводов, Па;
  • R – удельное сопротивление трению, Па/м;
  • l – длина трубы на одном участке, м;
  • Z – потеря давления в местных сопротивлениях, Па.

Данный расчет достаточно громоздкий и сложный, в то время как значение Rl для каждого участка можно легко найти по тем же таблицам Шевелева. В примере синим кружочком отмечены значения 1000i на каждом участке, его надо только пересчитать по длине трубы. Возьмем первый участок из примера, его протяженность 5 м. Тогда сопротивление трению будет:

Rl = 26.6 / 1000 х 5 = 0.13 Бар.

Так же производим просчет всех участков попутной системы отопления, а потом результаты суммируем. Остается узнать значение Z, перепад давления в местных сопротивлениях. Для котла и радиаторов эти цифры указаны в паспорте на изделие. На все прочие сопротивления мы советуем взять 20% от общих потерь на трение Rl и все эти показатели просуммировать. Полученное значение умножаем на коэффициент запаса 1.3, это и будет необходимый напор насоса.

Следует знать, что производительность насоса – это не емкость системы отопления, а общий расход воды по всем ветвям и стоякам. Пример его расчета представлен в предыдущем разделе, только для подбора перекачивающего агрегата нужно тоже предусмотреть запас не менее 20%.

Цель и ход выполнения расчета

Конечно, за результатами можно обратиться к специалистам либо воспользоваться онлайн-калькулятором, коих хватает на всяких интернет-ресурсах. Но первое стоит денег, а второе может дать некорректный результат и его все равно надо проверять.

Расчет расхода теплоносителя в системе отопления

Так что лучше набраться терпения и взяться за дело самому. Надо понимать, что практическая цель гидравлического расчета – это подбор проходных сечений труб и определение перепада давления во всей системе, чтобы верно выбрать циркуляционный насос.

Общая схема расчета выглядит таким образом:

  • подготовка аксонометрической схемы: когда уже выполнен расчет отопительных приборов, то известна их мощность, ее надо нанести на чертеж возле каждого радиатора;
  • определение расхода теплоносителя и диаметров трубопроводов;
  • расчет сопротивления системы и подбор циркуляционного насоса;
  • расчет объема воды в системе и вместительности расширительного бака.

Любой гидравлический расчет системы отопления начинается со схемы, нарисованной в 3 измерениях для наглядности (аксонометрия). На нее наносятся все известные данные, в качестве примера возьмем участок системы, изображенный на чертеже:

Расчет расхода теплоносителя в системе отопления

Расчет гидравлики водяной системы отопления

Теплоноситель циркулирует по системе под давлением, которое не является постоянной величиной. Оно снижается из-за наличия сил трения воды о стенки труб, сопротивления на трубной арматуре и фитингах. Домовладелец также вносит свою лепту, корректируя распределение тепла по отдельным помещениям.

Расчет расхода теплоносителя в системе отопленияДавление растет, если температура нагрева теплоносителя повышается и наоборот – падает при ее снижении.

Чтобы избежать разбалансировки отопительной системы, необходимо создать условия, при которых к каждому радиатору поступает столько теплоносителя, сколько необходимо для поддержания заданной температуры и восполнения неизбежных теплопотерь.

Главной целью гидравлического расчета является приведение в соответствие расчетных расходов по сети с фактическими или эксплуатационными.

На данном этапе проектирования определяются:

  • диаметр труб и их пропускная способность;
  • местные потери давления по отдельным участкам системы отопления;
  • требования гидравлической увязки;
  • потери давления по всей системе (общие);
  • оптимальный расход теплоносителя.

Для производства гидравлического расчета необходимо проделать некую подготовку:

  1. Собрать исходные данные и систематизировать их.
  2. Выбрать методику расчета.

Первым делом проектировщик изучает теплотехнические параметры объекта и выполняет теплотехнический расчет. В итоге у него появляется информация о количестве тепла, необходимом для каждого помещения. После этого выбираются отопительные приборы и источник тепла.

Расчет расхода теплоносителя в системе отопления

Схематичное изображение отопительной системы в частном доме

На стадии разработки принимается решение о типе отопительной системы и особенностях ее балансировки, подбираются трубы и арматура. По окончании составляется аксонометрическая схема разводки, разрабатываются планы помещений с указанием:

  • мощности радиаторов;
  • расхода теплоносителя;
  • расстановки теплового оборудования и пр.

Все участки системы, узловые точки маркируются, подсчитывается и наносится на чертеж длина колец.

Расчет диаметра труб

Расчет расхода теплоносителя в системе отопленияРасчет сечения труб должен опираться на результаты теплового расчета, обоснованные экономически:

  • для двухтрубной системы – разность между tr (горячим теплоносителем) и to (охлажденным – обраткой);
  • для однотрубной – расход теплоносителя G, кг/ч.

Кроме того, в расчете должна учитываться скорость движения рабочей жидкости (теплоносителя) – V . Ее оптимальная величина находится в диапазоне 0,3-0,7 м/с. Скорость обратно пропорциональна внутреннему диаметру трубы.

При скорости движения воды, равной 0,6 м/с в системе появляется характерный шум, если же она менее 0,2 м/с, появляется риск возникновения воздушных пробок.

Для расчетов потребуется еще одна скоростная характеристика – скорость теплопотока. Она обозначается буквой Q, измеряется в ваттах и выражается в количестве тепла, переданного в единицу времени

Q (Вт) = W (Дж)/t (с)

Кроме вышеперечисленных исходных данных для расчета потребуются параметры отопительной системы – длина каждого участка с указанием приборов, подключенных к нему. Эти данные для удобства можно свести в таблицу, пример которой приведен ниже.

Таблица параметров участков

Обозначение участка Длина участка в метрах Количество приборов а участке, шт.
1-2 1,8 1
2-3 3,0 1
3-4 2,8 2
4-5 2,9 2

Расчет диаметров труб достаточно сложный, поэтому проще воспользоваться справочными таблицами. Их можно найти на сайтах производителей труб, в СНиП или специальной литературе.

Монтажники при подборе диаметра труб пользуются правилом, выведенным на основании анализа большого числа отопительных систем. Правда, это касается только небольших частных домов и квартир. Практически все отопительные котлы оборудованы патрубками подачи и обратки ¾ и ½ дюйма. Такой трубой и выполняется разводка до первого разветвления. Далее на каждом участке размер трубы уменьшают на один шаг.

Такой подход не оправдывает себя, если в доме имеется два или более этажей. В этом случае приходится производит полноценный расчет и обращаться к таблицам.

Сферы использования циркуляционных насосов

Главная задача циркуляционного насоса состоит в том, чтобы улучшить циркуляцию теплоносителя по элементам отопительной системы. Проблема поступления в радиаторы отопления уже остывшей воды хорошо знакома жильцам верхних этажей многоквартирных домов. Связаны подобные ситуации с тем, что теплоноситель в таких системах перемещается очень медленно и успевает остыть, пока достигнет участков отопительного контура, находящихся на значительном отдалении.

При эксплуатации в загородных домах автономных систем отопления, циркуляция воды в которых осуществляется естественным путем, тоже можно столкнуться с проблемой, когда радиаторы, установленные в самых дальних точках контура, еле нагреваются. Это также является следствием недостаточного давления теплоносителя и его медленного движения по трубопроводу. Избежать подобных ситуаций как в многоквартирных, так и в частных домах позволяет установка циркуляционного насосного оборудования. Принудительно создавая в трубопроводе требуемое давление, такие насосы обеспечивают высокую скорость движения нагретой воды даже к самым отдаленным элементам системы отопления.

Расчет расхода теплоносителя в системе отопления

Насос повышает эффективность действующего отопления и позволяет совершенствовать систему, добавляя дополнительные радиаторы или элементы автоматики

Свою эффективность системы отопления с естественной циркуляцией жидкости, переносящей тепловую энергию, проявляют в тех случаях, когда их используют для обогрева домов небольшой площади. Однако, если оснастить такие системы циркуляционным насосом, можно не только повысить эффективность их использования, но и сэкономить на отоплении, снизив количество потребляемого котлом энергоносителя.

По своему конструктивному исполнению циркуляционный насос представляет собой мотор, вал которого передает вращение ротору. На роторе устанавливается колесо с лопатками – крыльчатка. Вращаясь внутри рабочей камеры насоса, крыльчатка выталкивает поступающую в нее нагретую жидкость в нагнетательную магистраль, формируя поток теплоносителя с требуемым давлением. Современные модели циркуляционных насосов могут работать в нескольких режимах, создавая в системах отопления различное давление перемещающегося по ним теплоносителя. Такая опция позволяет быстро прогреть дом при наступлении холодов, запустив насос на максимальную мощность, а затем, когда во всем здании сформируется комфортная температура воздуха, переключить устройство на экономичный режим работы.

Расчет расхода теплоносителя в системе отопления

Устройство циркуляционного насоса для отопления

Все циркуляционные насосы, используемые для оснащения систем отопления, делятся на две большие категории: устройства с «мокрым» и «сухим» ротором. В насосах первого типа все элементы ротора постоянно находятся в среде теплоносителя, а в устройствах с «сухим» ротором только часть таких элементов контактирует с перекачиваемой средой. Большей мощностью и более высоким КПД отличаются насосы с «сухим» ротором, но они сильно шумят в процессе работы, чего не скажешь об устройствах с «мокрым» ротором, которые издают минимальное количество шума.

Виды циркуляционных насосов

Конструкция типового циркуляционного насоса состоит из корпуса, изготовленного из нержавеющего металла, керамического ротора и вала, оснащенного колесом с лопастями. Ротор приводится в действие с помощью электродвигателя. Подобная конструкция обеспечивает забор воды с одной стороны устройства и ее нагнетание в трубопроводы со стороны выхода. Движение воды по системе происходит за счет центробежной силы. Таким образом, преодолевается сопротивление, возникающее на отдельных участках труб отопления.

Расчет расхода теплоносителя в системе отопления

Все подобные устройства разделяются на два типа – сухой и мокрый. В первом случае отсутствует контакт ротора с перекачиваемой водой. Всю его рабочую поверхность от электродвигателя отделяют специальные защитные кольца, тщательно отполированные и подогнанные между собой. Работа насосов сухого типа считается более эффективной, однако в процессе эксплуатации возникает довольно сильный шум. В связи с этим, для их установки оборудуются отдельные изолированные помещения.

При выборе таких моделей следует учитывать наличие воздушных завихрений, образующихся во время работы. Под их воздействием в воздух поднимается пыль, которая может легко попасть внутрь устройства и нарушить герметичность уплотнительных колец. Это приведет к выходу из строя всей системы. Поэтому в качестве защиты между кольцами присутствует тончайшая водяная пленка. Она обеспечивает смазку, предотвращая преждевременный износ колец.

Расчет расхода теплоносителя в системе отопления

Циркуляционные насосы мокрого типа имеют отличительную особенность в виде ротора, постоянно находящегося в перекачиваемой жидкости. Место расположения электродвигателя надежно отделено герметичным металлическим стаканом. Данные устройства как правило используются в небольших отопительных системах. Они значительно меньше шумят при работе и не требуют дополнительных мероприятий по техническому обслуживанию. Обычно такие насосы периодически ремонтируются и настраиваются до нужных параметров.

Существенным недостатком этих насосов считается низкий коэффициент полезного действия из-за недостаточной герметичности гильзы, разделяющей статор и теплоноситель

Выбирая нужную модель, следует обращать внимание на то, чтобы в насосе был не только мокрый ротор, но и защищенный статор

Последние поколения циркуляционных насосов практически полностью автоматизированы. Умная автоматика обеспечивает своевременное переключение уровня обмоток и существенно увеличивает производительность устройства. Такие модели чаще всего используются при стабильном или незначительно изменяющемся расходе воды. Благодаря ступенчатой регулировке, появилась возможность выбора наиболее оптимальных режимов работы и существенной экономии электроэнергии.

Расчет объема расширительного бака

Для того чтобы рассчитать объем расширительного бачка мембранного типа следует знать количество теплоносителя, который находится в отопительном контуре. Зависимость такая: расширительный бак должен быть объемом в 10 % от количества теплоносителя.

Количество воды в СО рассчитывается по формуле: W = π (D2/4) L где:

  • π – 3,14;
  • D – внутренний диаметр участка трубопровода;
  • L – длина участка трубопровода (если весь контур выполнен из трубы одного диаметра, то считаем длину контура).

Например, внутренний диаметр трубопровода из армированного полипропилена – 21,2 мм = 0,021м; длина контура – 100 м. 3,14 х (0,0212/4) х 100 = 0.0345м3 или 34,5 литра. От сюда вывод: при объеме теплоносителя в системе 34,5 л, в температурных пределах СО от 0 до 80°С и давлении в системе от 0,3 до 1 Бар, необходим расширительный бак, емкостью 3,5 л.

Чтобы рассчитать параметры циркуляционного насоса нужны данные о мощности котла, разница температур на входе и выходе котельной установки. Далее можно воспользоваться формулой Q = N /(t 2- t 1), где N – мощность котлоагрегата; T1 – температура теплоносителя на подающем патрубке, T2 – температура охлажденного теплоносителя на обратной ветке контура.

Совет: следует знать, что для построения грамотной однотрубной системы отопления, кроме полученных данных необходимо сделать расчет гидравлических сопротивлений, которые возникают на равнопроходных отводах, учесть гидравлические потери на точках сужения трубопровода, грязевике и обратном клапане (если предполагается). Данный расчет сделать самостоятельно достаточно просто, используя программы: «Гидравлические и тепловые расчеты» и HERZ. C. O. С.

2 Диаметр труб

Чтобы рассчитать гидравлику отопительной системы, понадобится информация по тепловому расчету и аксонометрической схеме. Для подбора сечения труб используются целесообразные, с экономической точки зрения, итоговые данные теплорасчета:

  1. 1. Оптимальной разницей температур между горячей и охлажденной рабочей жидкостью для двухтрубного контура является значение 20 ºC. Δtco = tг — tо = 90 ºС — 70 ºС = 20 ºС, где tг — температура горячей воды, tо — температура охлажденного теплоносителя.
  2. 2. Потребление рабочей жидкости (G) для однотрубного контура (кг/час).
  3. 3. Оптимальная скорость (V) перемещения рабочей жидкости от 0,31 до 0,72 м/с.
  4. 4. Расчетное значение потока тепла (Q).
  5. 5. Показатели плотности воды.

Чтобы определить внутренний диаметр каждого участка, используют таблицу. Предварительно каждая отопительная ветвь разбивается на сегменты начиная с самой конечной точки. Разбивка осуществляется исходя из расхода теплоносителя, который варьируется от одного отопительного элемента к другому. Новый сегмент начинается после каждого отопительного прибора.

Теплоноситель на первом участке рассчитывается следующим образом: 860 x 2 / 20 = 86 кг/ч. Полученные результаты непосредственно наносятся на аксонометрическую схему, однако, чтобы продолжить дальнейшие вычисления, полученное итоговое значение потребуется перевести в другие единицы измерения — литры в секунду.

Для выполнения конвертации применяют формулу: GV = G / 3600 х ρ, где GV — ёмкостное потребление жидкости (л/сек), ρ — показатель плотности теплоносителя (при температуре 60 ºС составляет 0,983 кг/литр). Получается: 86 ÷ 3600 x 0,983 = 0,024 л/сек. Необходимость в конвертации меры физической величины обосновывается использованием табличных значений, при помощи которых определяется сечение трубопровода.

Источник: vse-otoplenie.ru

1 Расчет площади отопительных приборов в однотрубных системах отопления

Поверхность
нагрева отопительных приборов в
однотрубных системах отопления
рассчитывается с учетом температуры
теплоносителя на входе в каждый прибор
tвх
, С,
количества теплоносителя, проходящего
через прибор Gпр,
кг/ч, и величины тепловой нагрузки
прибора Qпр,
Вт.

Расчет
площади каждого отопительного прибора
осуществляется в определенной
последовательности:

а)
Вычерчивается расчетная схема стояка,
принимается тип отопительного прибора
и место установки, схема подачи
теплоносителя в прибор, конструкция
узла прибора. На расчетной схеме
проставляются диаметры труб, тепловая
нагрузка прибора, равная теплопотерям
данного помещения, Qт.п.,
Вт.

б)
Рассчитывается общее количество воды,
кг/ч, циркулирующей по стояку, по формуле:

(4.1)

где

коэффициент учета дополнительного
теплового потока, (для данного вида
отопительных приборов=
1,02);


коэффициент учета дополнительных потерь
теплоты отопительных приборов у наружных
ограждений, принимаемый по таблице 4.1;

с
=4,187 кДж/(кг.оС)
удельная массовая теплоемкость воды;

–суммарные
теплопотери в помещениях, обслуживаемых
стояком, Вт.

Таблица
4.1 — Коэффициент учета дополнительных
потерь теплоты отопительных приборов
у наружных ограждений

Наименование
отопительного прибора

Коэффициент
учета,
у наружной стены, в том числе под
световыми проемами

Радиатор
чугунный секционный

1,02

Рекомендуемые
диаметры трубопроводов узла нагревательных
приборов приведены в таблице 4.2.

Таблица
4.2 — Рекомендуемые диаметры трубопроводов
узла нагревательного прибора

Наименование
узла стояка

Диаметр
труб Dу,
мм

стояка

замыкающего
участка

подводки

1

3

4

5

Этажестояк
со смещенным обходным участком

15

20

25

15

20

20

15

20

25/20

Этажестояк
с осевым замыкающим участком и краном
типа КРП

15

20

15

15

15

20

Этажестояк
проточный

15

20

15

20

То
же

15

20

15

20

15

20

Узел
верхнего этажа при нижней разводке
и кране типа КРП

15

20

15

15

15

20

То
же

15

20

15

20

15

20

Тепловая
нагрузка Qст,
Вт и общее количество воды Gст,
кг/ч, циркулирующей по стояку, сведены
в таблицу 4.3.

Например:
Qст1
определяется суммированием теплопотерь
в помещениях 101, 201, 301; Qст2
— в помещениях 102, 202, 302.

Таблица
4.3 — Сводная таблица расчета расхода
воды в стояках

№ ст

Qст,
Вт

Gст,
кг/ч

1

2

3

Qст

Gст

В
данном курсовомпроекте проводим
оценочный расчет нагревательных
приборов.

Расчетная
наружная площадь поверхности отопительного
прибора, м2,
определяется по формуле:

(4.2)

гдеQпр
– тепловая нагрузка на прибор, Вт,
Qпр=Qпом;

qном
– усредненное значение номинальной
плотности теплового потока, Вт/м2:


для радиаторов чугунных — qном=595,Вт/м2.

Расчетное
количество секций радиаторов по помещению
(стояку) определяется по формуле:

(4.3)

где
а1
– площадь одной секции радиатора марки
М140-АО (ГОСТ
8690-75),
м2,а1
= 0,254 м2;

3
— поправочный коэффициент, учитывающий
число секций в одном радиаторе; 3
=;

4
– поправочный коэффициент, учитывающий
способ установки радиатора в помещении;
4
= 1.

Таблица
4.4 — Значения поправочного коэффициента
β
3,
учитывающего число секций в одном
радиаторемарки МС 140-АО

Число
секций

до
15

15-20

21

β3

1,0

0,98

0,96

При
округлении дробного числа элементов
приборов любого типа до целого допускается
уменьшать их расчетную площадь Апр
не более чем на 5% (0,1 м2).
При других условиях принимается ближайший
нагревательный прибор.

Результаты
расчетов отопительных приборов каждого
стояка системы водяного отопления
сведены в таблицу 4.5.

Таблица
4.5 — Результаты расчета отопительных
приборов системы водяного отопления

помещения

Qпр,

Вт

Апр,

м2

,

секц.

,
секц.

Отопительные приборы

Как рассчитать отопление в частном доме для отдельных помещений и подобрать соответствующие этой мощности отопительные приборы?

Сама методика расчета потребности в тепле для отдельной комнаты полностью идентична приведенной выше.

К примеру, для комнаты площадью 12 м2с двумя окнами в описанном нами доме расчет будет иметь такой вид:

  1. Объем комнаты равен 12*3,5=42 м3.
  2. Базовая тепловая мощность будет равной 42*60=2520 ватт.
  3. Два окна добавят к ней еще 200. 2520+200=2720.
  4. Региональный коэффициент увеличит потребность в тепле вдвое. 2720*2=5440 ватт.

Как пересчитать полученное значение в количество секций радиатора? Как подобрать количество и тип отопительных конвекторов?

Производители всегда указывают тепловую мощность для конвекторов, пластинчатых радиаторов и т.д. в сопроводительной документации.

Расчет расхода теплоносителя в системе отопления

Таблица мощности для конвекторов VarmannMiniKon.

  • Для секционных радиаторов необходимую информацию обычно можно найти на сайтах дилеров и производителей. Там же нередко можно обнаружить калькулятор для пересчета киловатт в секции.
  • Наконец, если вы используете секционные радиаторы неизвестного происхождения, при их стандартном размере в 500 миллиметров по осям ниппелей можно ориентироваться на следующие усредненные значения:

Тепловая мощность на одну секцию, ватты

В автономной отопительной системе с ее умеренными и предсказуемыми параметрами теплоносителя чаще всего используются алюминиевые радиаторы. Их разумная цена очень приятным образом сочетается с пристойным внешним видом и высокой теплоотдачей.

В нашем случае алюминиевых секций мощностью 200 ватт потребуется 5440/200=27 (с округлением).

Расчет расхода теплоносителя в системе отопления

Разместить в одной комнате столько секций — нетривиальная задача.

Как всегда, есть пара тонкостей.

  • При боковом подключении многосекционного радиатора температура последних секций куда ниже, чем первых; соответственно, падает тепловой поток от отопительного прибора. Решить проблему поможет простая инструкция: подключайте радиаторы по схеме «снизу вниз».
  • Производители указывают тепловую мощность для дельты температур между теплоносителем и помещением в 70 градусов (например, 90/20С). При ее снижении тепловой поток будет падать.

Особый случай

Нередко в качестве отопительных приборов в частных домах используются самодельные стальные регистры.

Обратите внимание: они привлекают не только низкой себестоимостью, но и исключительной прочностью на разрыв, что очень кстати при подключении дома к теплотрассе. В автономной системе отопления их привлекательность сводится на нет непритязательным внешним видом и невысокой теплоотдачей на единицу объема отопительного прибора

Расчет расхода теплоносителя в системе отопления

Прямо скажем — не верх эстетики.

Тем не менее: как оценить тепловую мощность регистра известного размера?

Для одиночной горизонтальной круглой трубы она вычисляется по формуле вида Q = Pi*Dн *L * k * Dt, в которой:

  • Q — тепловой поток;
  • Pi — число «пи», принимаемое равным 3,1415;
  • Dн — наружный диаметр трубы в метрах;
  • L — ее длина (тоже в метрах);
  • k — коэффициент теплопроводности, который берется равным 11,63 Вт/м2*С;
  • Dt — дельта температур, разница между теплоносителем и воздухом в комнате.

В многосекционном горизонтальном регистре теплоотдача всех секций, кроме первой, умножается на 0,9, поскольку они отдают тепло восходящему потоку нагретого первой секцией воздуха.

Расчет расхода теплоносителя в системе отопления

В многосекционном регистре нижняя секция отдает больше всего тепла.

Давайте вычислим теплоотдачу четырехсекционного регистра с диаметром секции 159 мм и длиной 2,5 метра при температуре теплоносителя 80 С и температуре воздуха в комнате 18 С.

  1. Теплоотдача первой секции равна 3,1415*0,159*2,5*11,63*(80-18)=900 ватт.
  2. Теплоотдача каждой из остальных трех секций равна 900*0,9=810 ватт.
  3. Суммарная тепловая мощность отопительного прибора — 900+(810*3)=3330 ватт.

Выбор теплоносителя

Чаще всего в качестве рабочей жидкости для систем отопления применяется вода. Впрочем, эффективным альтернативным решением может стать антифриз. Такая жидкость не замерзает при понижении температуры окружающей среды до критической для воды отметки. Несмотря на очевидные преимущества, цена антифриза достаточно высока. Поэтому используют его преимущественно для обогрева незначительных по площади строений.

Расчет расхода теплоносителя в системе отопления

Заполнение отопительных систем водой нуждается в предварительной подготовке такого теплоносителя. Жидкость должна быть отфильтрована от растворенных минеральных солей. Для этого могут быть использованы специализированные химические реагенты, которые присутствуют в продаже. Более того, из воды в системе отопления должен быть удален весь воздух. В противном случае возможно снижение эффективности обогрева помещений.

Расчет объема воды в системе отопления с онлайн калькулятором

Расчет расхода теплоносителя в системе отопления

Каждая отопительная система обладает рядом значимых характеристик – номинальную тепловую мощность, расход топлива и объем теплоносителя. Расчет объема воды в системе отопления требует комплексного и скрупулезного подхода. Так, вы сможете выяснить, котел, какой мощности выбрать, определить объем расширительного бака и необходимое количество жидкости для заполнения системы.

Значительная часть жидкости располагается в трубопроводах, которые в схеме теплоснабжения занимают самую большую часть.

Поэтому для расчета объема воды нужно знать характеристики труб, и важнейший из них – это диаметр, который определяет вместимость жидкости в магистрали.

Если неправильно сделать расчеты, то система будет работать не эффективно, помещение не будет прогреваться на должном уровне. Сделать корректный расчет объемов для системы отопления поможет онлайн калькулятор.

Калькулятор объема жидкости в отопительной системе

В системе отопления могут использоваться трубы различных диаметров, особенно в коллекторных схемах. Поэтому объем жидкости вычисляют по следующей формуле:

Рассчитывается объем воды в системе отопления можно также как сумма ее составляющих:

В сумме эти данные позволяют рассчитать большую часть объема системы отопления. Однако кроме труб в системе теплоснабжения есть и другие компоненты. Чтобы произвести расчет объема отопительной системы, включая все важные компоненты теплоснабжения, воспользуйтесь нашим онлайн калькулятором объема системы отопления.

Совет

Сделать вычисление с помощью калькулятора очень просто. Нужно ввести в таблицу некоторые параметры, касающиеся типа радиаторов, диаметра и длины труб, объема воды в коллекторе и т.д. Затем нужно нажать на кнопку «Рассчитать» и программа выдаст вам точный объем вашей системы отопления.

Проверить калькулятор можно, используя указанные выше формулы.

Пример расчета объема воды в системе отопления:

Значения объемов различных составляющих

Объем воды в радиаторе:

  • алюминиевый радиатор — 1 секция — 0,450 литра
  • биметаллический радиатор — 1 секция — 0,250 литра
  • новая чугунная батарея 1 секция — 1,000 литр
  • старая чугунная батарея 1 секция — 1,700 литра.

Объем воды в 1 погонном метре трубы:

  • ø15 (G ½») — 0,177 литра
  • ø20 (G ¾») — 0,310 литра
  • ø25 (G 1,0″) — 0,490 литра
  • ø32 (G 1¼») — 0,800 литра
  • ø15 (G 1½») — 1,250 литра
  • ø15 (G 2,0″) — 1,960 литра.

Чтобы посчитать весь объем жидкости в отопительной системе нужно еще добавить объем теплоносителя в котле. Эти данные указываются в сопроводительном паспорте устройства или же взять примерные параметры:

  • напольный котел — 40 литров воды;
  • настенный котел — 3 литра воды.

Выбор котла напрямую зависит от объема жидкости в системе теплоснабжения помещения.

Основные виды теплоносителей

Существует четыре основных вида жидкости, используемых для заполнения отопительных систем:

  1. Вода – максимально простой и доступный теплоноситель, который может использоваться в любых отопительных системах. Вместе с полипропиленовыми трубами, которые предотвращают испарение, вода становится практически вечным теплоносителем.
  2. Антифриз – этот теплоноситель обойдется уже дороже воды, и используется в системах нерегулярно отапливаемых помещений.
  3. Спиртосодержащие теплоносители – это дорогостоящий вариант заполнения отопительной системы. Качественная спиртосодержащая жидкость содержит от 60% спирта, около 30% воды и порядка 10% объема составляют другие добавки. Такие смеси обладают отличными незамерзающими свойствами, но огнеопасны.
  4. Масло – в качестве теплоносителя используется только в специальных котлах, но в отопительных системах практически не применяется, так как эксплуатация такой системы обходится очень дорого. Также масло очень долго разогревается (необходим разогрев, как минимум, до 120°С), что технологически очень опасно, при этом и остывает такая жидкость очень долго, поддерживая высокую температуру в помещении.

В заключении стоит сказать, что если система отопления модернизируется, монтируются трубы или батареи, то нужно произвести перерасчет ее общего объема, согласно новым характеристика всех элементов системы.

Антифризы параметры и виды теплоносителей

Основой для производства антифриза служит этиленгликоль или пропиленгликоль. В чистом виде эти вещества представляют собой весьма агрессивные среды, но дополнительные присадки делают антифриз пригодным для использования в системах отопления. От введенных присадок зависит степень антикоррозийности, срок работы и, соответственно, конечная стоимость.

Главной же задачей присадок является защита от коррозии. Имея низкую теплопроводность, слой ржавчины становится изолятором тепла. Ее частицы способствуют засорению каналов, выводят из строя циркуляционные насосы, приводят к протечкам и повреждениям в отопительной системе.

Более того, сужение внутреннего диаметра трубопровода влечет за собой гидродинамическое сопротивление, из-за чего скорость теплоносителя снижается, увеличиваются энергозатраты.

Антифриз имеет широкий диапазон температур (от -70°С до +110°С), но, изменяя пропорции воды и концентрата, можно получить жидкость с другой температурой замерзания. Это позволяет использовать прерывистый режим отопления и включать обогрев помещений только при необходимости. Как правило, антифриз предлагается двух типов: с температурой замерзания не больше -30°С и не больше -65°С.

В промышленных системах охлаждения и кондиционирования, а также в технических системах с отсутствием особых экологических требований используется антифриз на основе этиленгликоля с антикоррозийными присадками. Связано это с токсичностью растворов. Для их применения требуются расширительные баки закрытого типа, не допускается использование в двухконтурных котлах.

Иные возможности применения получил раствор на основе пропиленгликоля. Это экологически чистый и безопасный состав, который применяют в пищевой, парфюмерной промышленности и жилых зданиях. Везде, где требуется не допустить возможности попадания в почву и грунтовые воды токсичных веществ.

Следующий тип — триэтиленгликолевый, который применяют при высоких температурных режимах (до 180°С), но его параметры не дали широкого применения.

Требования к теплоносителю

Нужно сразу понять, что не существует идеального теплоносителя. Те виды теплоносителей, которые существуют на сегодняшний день, могут выполнять свои функции только в определенном диапазоне температур. Если выйти за рамки этого диапазона, то характеристики качества теплоносителя могут резко измениться.

Теплоноситель для отопления должен обладать такими свойствами, которые будут позволять за определенную единицу времени переносить как можно большее количество тепла. От вязкости теплоносителя во много зависит, какой воздействие она будет оказывать на прокачку теплоносителя по всей отопительной системе за конкретный интервал времени. Чем выше вязкость теплоносителя, тем более хорошими характеристиками он обладает.

Расчет расхода теплоносителя в системе отопления

Физические свойства теплоносителей

Теплоноситель  не должен оказывать коррозийное воздействие на материал, из которого изготовлены трубы или приборы нагревательного характера.

Если это условие не будет соблюдаться, то выбор материалов станет более ограниченным. Помимо вышеперечисленных свойств, теплоноситель также должен обладать смазывающими способностями. От этих характеристик зависит выбор материалов, которые применяются для конструкции различных механизмов и циркуляционных насосов.

Кроме того, теплоноситель должен быть безопасным исходя из таких его характеристик, как: температура возгорания, выделение токсичных веществ, вспышка паров. Также теплоноситель не должен быть слишком дорогим, изучая отзывы, можно понять, что даже если система и будет работать эффективно, не оправдает себя с финансовой точки зрения.

Видео о том, как система заправляется теплоносителем и как производится замена теплоносителя в системе отопления, можно посмотреть ниже.

Расчет расхода воды на отопление Система отопления

Расчет расхода теплоносителя в системе отопления» Расчеты отопления

Конструкция обогрева включает котел, систему соединения, развоздушки терморегуляторы, коллекторы, крепежи, бак для расширения, батареи, увеличивающие давление насосы, трубы.

Любой фактор определенно важен. Поэтому выбор частей монтажа нужно делать правильно. На открытой вкладке мы постараемся помочь подобрать для своей квартиры нужные части монтажа.

Монтаж обогрева особняка включает важные устройства.

Страница 1

Расчетный расход сетевой воды, кг/ч, для определения диаметров труб в водяных тепловых сетях при качественном регулировании отпуска теплоты следует определять отдельно для отопления, вентиляции и горячего водоснабжения по формулам:

на отопление

(40)

максимальный

(41)

в закрытых системах теплоснабжения

среднечасовой, при параллельной схеме присоединения водоподогревателей

(42)

максимальный, при параллельной схеме присоединения водоподогревателей

(43)

среднечасовой, при двухступенчатых схемах присоединения водоподогревателей

(44)

максимальный, при двухступенчатых схемах присоединения водоподогревателей

(45)

Важно

В формулах (38 – 45) расчетные тепловые потоки приводятся в Вт, теплоёмкость с принимается равной. Расчет по этим формулам производится поэтапно, для температур.

Суммарные расчетные расходы сетевой воды, кг/ч, в двухтрубных тепловых сетях в открытых и закрытых системах теплоснабжения при качественном регулировании отпуска теплоты следует определять по формуле:

(46)

Коэффициент k3, учитывающий долю среднечасового расхода воды на горячее водоснабжение при регулировании по нагрузке отопления, следует принимать по таблице №2.

Таблица №2. Значения коэффициента

r-Радиус окружности, равный половине диаметра, м

Q-расход воды м 3 /с

D-Внутренний диаметр трубы, м

V-скорость течения теплоносителя, м/с

Сопротивление движению теплоносителя.

Любой движущийся внутри трубы теплоноситель, стремиться к тому, чтобы прекратить свое движение. Та сила, которая приложена к тому, чтобы остановить движение теплоносителя – является силой сопротивления.

Это сопротивление, называют – потерей напора. То есть движущийся теплоноситель по трубе определенной длины теряет напор.

Напор измеряется в метрах или в давлениях (Па). Для удобства в расчетах необходимо использовать метры.

Извиняйте, но я привык указывать потерю напора в метрах. 10 метров водного столба создают 0,1 МПа.

Для того, чтобы глубже понять смысл данного материла, рекомендую проследить за решением задачи.

Задача 1.

В трубе с внутренним диаметром 12 мм течет вода, со скоростью 1м/с. Найти расход.

Решение: Необходимо воспользоваться вышеуказанными формулами:

Достоинства и недостатки воды

Несомненным преимуществом воды является наивысшая теплоемкость среди других жидкостей. Для ее нагрева требуется значительное количество энергии, но при этом она позволяет передать немалое количество тепла при охлаждении. Как показывает расчет, при нагревании 1 л воды до температуры 95°С и ее охлаждении до 70°С выделится 25 ккал тепла (1 калория — количество теплоты, необходимой для нагрева 1 г воды на 1°С).

Утечка воды при разгерметизации системы отопления не окажет негативного влияния на здоровье и самочувствие. И для того, чтобы восстановить начальный объем теплоносителя в системе, достаточно долить недостающее количество воды в расширительный бак.

К недостаткам можно отнести замерзание воды. После запуска системы требуется постоянный контроль за ее бесперебойной работой. Если возникла необходимость отъезда на длительный срок или по каким-либо причинам приостановлена подача электроэнергии или газа, то придется произвести слив теплоносителя из системы отопления. В противном случае при низкой температуре, замерзая, вода расширится и произойдет разрыв системы.

Следующий недостаток — это способность вызывать коррозию во внутренних узлах системы отопления. Не подготовленная должным образом вода может содержать в своем составе повышенный уровень солей и минералов. При нагревании это способствует появлению осадков и нарастанию накипи стенках элементов. Все это приводит к уменьшению внутреннего объема системы и снижению теплоотдачи.

Чтобы избежать этого недостатка или свести его к минимуму, прибегают к очистке и смягчению воды, вводя в ее состав специальные присадки, либо применяют другие методы.

Кипячение — это самый простой и известный каждому способ. В процессе обработки значительная часть примесей отложится в виде накипи на дне емкости.

Используя химический способ, в воду добавляют определенное количество гашеной извести или кальцинированной соды, которые приведут к образованию осадка. После окончания химической реакции путем фильтрации воды устраняют выпавший осадок.

Меньшее количество примесей содержится в дождевой или талой воде, но для систем отопления наилучшим вариантом будет дистиллированная вода, в которой эти примеси вовсе отсутствуют.

Если нет желания заниматься недостатками, то следует задуматься об альтернативном решении.

Расширительный бак

И в этом случае есть две методики расчета — простая и точная.

Простая схема

Простой расчет прост донельзя: объем расширительного бака берется равным 1/10 объема теплоносителя в контуре.

Откуда взять значение объема теплоносителя?

Вот пара простейших решений:

  1. Заполните контур водой, стравите воздух, а потом слейте всю воду через сбросник в любую мерную посуду.
  2. Кроме того, грубо объем сбалансированной системы можно вычислить из расчета 15 литров теплоносителя на киловатт мощности котла. Так, в случае котла мощностью 45 КВт в системе будет примерно 45*15=675 литров теплоносителя.

Стало быть, в этом случае разумным минимумом будет расширительный бак для системы отопления в 80 литров (с округлением в большую сторону до стандартного значения).

Расчет расхода теплоносителя в системе отопления

Стандартные объемы расширительных бачков.

Точная схема

Более точно можно своими руками рассчитать объем расширительного бака по формуле V = (Vt х E)/D, в которой:

  • V — искомое значение в литрах.
  • Vt — полный объем теплоносителя.
  • E — коэффициент расширения теплоносителя.
  • D — коэффициент эффективности расширительного бака.

Коэффициент расширения воды и бедных водно-гликолевых смесей можно взять по следующей таблице (при нагреве с исходной температуры в +10 С):

Расчет расхода теплоносителя в системе отопления

А вот коэффициенты для теплоносителей с большим содержанием гликоля.

Коэффициент эффективности бачка можно рассчитать по формуле D = (Pv — Ps) / (Pv + 1), в которой:

Pv — максимальное давление в контуре (давление срабатывания предохранительного клапана).

Подсказка: обычно оно берется равным 2,5 кгс/см2.

Ps- статическое давление контура (оно же — давление зарядки бака). Оно рассчитывается как 1/10 часть перепада в метрах между уровнем расположения бака и верхней точкой контура (избыточное давление в 1 кгс/см2 поднимает водяной столб на 10 метров). Давление, равное Ps, создается в воздушной камере бака перед заполнением системы.

Давайте в качестве примера подсчитаем требования к бачку для следующих условий:

  • Перепад высоты между баком и верхней точкой контура равен 5 метрам.
  • Мощность отопительного котла в доме равна 36 КВт.
  • Максимальный нагрев воды равен 80 градусам (с 10 до 90С).
  1. Коэффициент эффективности бака будет равным (2,5-0,5)/(2,5+1)=0,57.

Вместо расчета коэффициент можно взять из таблицы.

  1. Объем теплоносителя из расчета 15 литров на киловатт равен 15*36=540 литров.
  2. Коэффициент расширения воды при нагреве на 80 градусов равен 3,58%, или 0,0358.
  3. Таким образом, минимальный объем бака равен (540*0,0358)/0,57=34 литра.

Правильный расчет теплоносителя в системе отопления

По совокупности признаков бесспорным лидером среди теплоносителей является обыкновенная вода. Лучше всего использовать дистиллированную воду, хотя подойдет и кипячёная или химически обработанная – для осаждения растворённых в воде солей и кислорода.

Расчет расхода теплоносителя в системе отопления

Однако если существует вероятность того, что температура в помещении с системой отопления на некоторое время опустится ниже нуля, то вода в качестве теплоносителя не подойдёт. Если она замёрзнет, то при увеличении объёма велика вероятность необратимого повреждения системы отопления. В таких случаях используют теплоноситель на базе антифриза.

Циркуляционный насос

Для нас важны два параметра: создаваемый насосом напор и его производительность.

Расчет расхода теплоносителя в системе отопления

На фото — насос в отопительном контуре.

С напором все не просто, а очень просто: контур любой разумной для частного дома протяженности потребует напора не более минимальных для бюджетных устройств 2 метров.

Справка: перепад в 2 метра заставляет циркулировать систему отопления 40-квартирного дома.

Простейший способ подобрать производительность — умножить объем теплоносителя в системе на 3: контур должен оборачиваться трижды за час. Так, в системе объемом 540 литров достаточно насоса производительностью 1,5 м3/час (с округлением).

Более точный расчет выполняется по формуле G=Q/(1,163*Dt), в которой:

  • G — производительность в кубометрах в час.
  • Q — мощность котла или участка контура, где предстоит обеспечить циркуляцию, в киловаттах.
  • 1,163 — коэффициент, привязанный к средней теплоемкости воды.
  • Dt — дельта температур между подачей и обраткой контура.

Подсказка: для автономной системы стандартные параметры — 70/50 С.

При пресловутой тепловой мощности котла в 36 КВт и дельте температур в 20 С производительность насоса должна составлять 36/(1,163*20)=1,55 м3/ч.

Расчет расхода теплоносителя в системе отопления

Иногда производительность указывается в литрах в минуту. Пересчитать несложно.

Общие расчеты

Определять общую емкость отопления необходимо, чтобы мощности отопительного котла хватило для качественного обогрева всех помещений. Превышение показателей допустимого объема может привести к повышению износа отопительного прибора, а также значительному расходу электроэнергии.

Необходимое количество теплоносителя рассчитывается согласно следующей формуле: Общий объем = V котла + V радиаторов + V труб + V расширительного бачка

Отопительный котел

Определиться с показателем емкости котла позволяет вычисление мощности нагревательного агрегата. Для этого достаточно взять за основу соотношение, при котором 1 кВт тепловой энергии достаточно для эффективного обогрева 10 м2 жилплощади. Данное соотношение является справедливым при наличии потолков, высота которых составляет не более 3-х метров.

Расчет расхода теплоносителя в системе отопления

Как только станет известен показатель мощности котла, достаточно отыскать подходящий агрегат в специализированном магазине. Объем оборудования каждый производитель указывает в паспортных данных.

Поэтому в случае выполнения правильного расчета мощности проблем с определением нужного объема не возникнет.

Чтобы определить достаточный объем воды в трубах, необходимо вычислить поперечное сечение трубопровода согласно формуле – S = π × R2, где:

Расчет расхода теплоносителя в системе отопления

  • S – поперечное сечение;
  • π – постоянная константа, равная 3,14;
  • R – внутренний радиус труб.

Рассчитав значение площади поперечного сечения труб достаточно умножить его на общую длину всего трубопровода в системе отопления.

Расширительный бак

Определить, какой емкостью должен обладать расширительный бак, можно, располагая данными о коэффициенте температурного расширения теплоносителя. У воды этот показатель составляет 0,034 при подогреве до 85 оС.

Выполняя расчет достаточно воспользоваться формулой: V-бака = (V сист × K) / D, где:

Расчет расхода теплоносителя в системе отопления

  • V-бака – необходимый объем расширительного бачка;
  • V-сист – общий объем жидкости в остальных элементах системы отопления;
  • K – коэффициент расширения;
  • D – эффективность расширительного бачка (указывается в технической документации).

В настоящее время существует широкое разнообразие отдельных типов радиаторов для отопительных систем. Помимо функциональных различий все они имеют разную высоту.

Чтобы рассчитать объем рабочей жидкости в радиаторах, необходимо для начала подсчитать их количество. После чего умножить данную сумму на объем одной секции.

Расчет расхода теплоносителя в системе отопления

Узнать объем одного радиатора можно, воспользовавшись данными из технического паспорта изделия. При отсутствии такой информации можно сориентироваться согласно усредненным параметрам:

  • чугунные – 1,5 л на секцию;
  • биметаллические – 0,2-0,3 л на секцию;
  • алюминиевые – 0,4 л на секцию.

Понять, как правильно рассчитать значение позволит следующий пример. Допустим, имеется 5 радиаторов, изготовленных из алюминия. Каждый обогревательный элемент содержит по 6 секций. Производим расчет: 5×6×0,4 = 12 л.

Как видно, расчет емкости отопления сводится к вычислению суммарного значения четырех вышеуказанных элементов.

Определить необходимую емкость рабочей жидкости в системе с математической точностью удается не каждому. Поэтому, не желая выполнять расчет, некоторые пользователи действуют следующим образом. Для начала заполняют систему примерно на 90%, после чего проверяют работоспособность. Далее стравливают скопившийся воздух и продолжают заполнение.

В процессе эксплуатации отопительной системы происходит естественный спад уровня теплоносителя в результате конвекционных процессов. При этом происходит потеря мощности и производительности котла. Отсюда вытекает необходимость наличия резервной емкости с рабочей жидкостью, откуда можно будет отслеживать убыток теплоносителя и при необходимости производить его пополнение.

Подбор счётчиков тепла

Подбор счётчика тепла осуществляется исходя из технических условий теплоснабжающей организации и требований нормативных документов. Как правило, требования предъявляются к:

  • схеме учёта
  • составу узла учёта
  • погрешности измерений
  • составу и глубине архива
  • динамическому диапазону датчика расхода
  • наличию устройств съёма и передачи данных

Для коммерческих расчётов допускаются только сертифицированные счётчики тепловой энергии зарегистрированные в Государственном реестре средств измерительной техники. В Украине запрещено использовать для коммерческих расчётов счётчики тепловой энергии датчики расхода которых имеют динамический диапазон менее чем 1:10.

Источник: mr-build.ru


Leave a Comment

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.