Назначение пластинчатых теплообменников


Назначение

Теплообменники – это устройства, используемые для передачи энергии между двумя жидкостями при различных температурах. Они повышают энергоэффективность, потому что энергия потоков, уже находящихся в системе, может быть передана в другую часть процесса, а не просто потрачена впустую. В новую эру устойчивого развития растущая настоятельная необходимость экономии энергии и снижения общего воздействия на окружающую среду сделала больший акцент на использовании теплообменников с более высокой тепловой эффективностью. В этом новом сценарии пластинчатый теплообменник может сыграть важную роль.

Критерии выбора

При определении оптимальной модели аппарата следует опираться на технические характеристики изделия:

  • схема подключения ГВС;
  • уровень тепловой нагрузки;
  • параметры греющей и нагреваемой среды.

В последнем пункте принимается во внимание такая информация, как входная и выходная температура в зимние и летние периоды, потенциальный расход среды и допустимые потери давления, процентное соотношение запаса мощности. Эти сведения берутся за основу при расчете производительности пластинчатого теплообменника.

История


Пластинчатые теплообменники были впервые введены в 1923 году для пастеризации молока, но в настоящее время используются во многих областях применения в химической, нефтяной, климатической, холодильной, молочной, фармацевтической, пищевой и медицинской промышленности. Это связано с их уникальными преимуществами, такими как гибкая тепловая конструкция (пластины могут быть просто добавлены или удалены для удовлетворения различных требований к тепловому режиму или обработке), простота очистки для поддержания строгих гигиенических условий, хороший контроль температуры (необходимый в криогенных процессах) и лучшие характеристики теплопередачи.

Технические параметры моделей

При изучении ассортимента опираются на следующие технические характеристики:

  • материал, из которого изготовлены панели – это могут быть тугоплавкие соединения, тонкая листовая сталь, чистый титан;
  • максимально допустимое давление среды в агрегате обычно не превышает 25 кгс/см²;
  • в каждом узле число используемых пластин начинается от 7-10, их количество определяется будущей областью применения;
  • устройства способны выдержать температуру теплоносителя не выше 180°C.

Одна рабочая единица способна обеспечить площадь теплообмена в пределах 0,1-2100 кв. м.

Типы пластинчатых теплообменников

Пластинчатый теплообменник (ПТ) – это компактный тип теплообменника, который использует серию тонких пластин для передачи тепла между двумя жидкостями. Существует четыре основных типа ПТ:

  • разборные,
  • паяные,
  • сварные
  • полусварные.

Пластинчатый разборный теплообменник – устройство, в котором основную функцию теплопередачи между теплоносителями выполняет пакет пластин. Среды не смешиваются между собой благодаря чередованию пластин с плотными резиновыми прокладками, которые образуют два контура движения (рисунок 1).

Назначение пластинчатых теплообменников
Рисунок 1 – Типичный пластинчатый теплообменник

Свое название «разборные» подобный тип агрегатов получил за то, что пакет пластин не только собирается, но и разбирается во время регулярного обслуживания (промывки) или ремонта.

Контроль

После этого уже готовый теплообменник подвергается гидроиспытаниям на нашем стенде. По греющей стороне теплообменника подаётся вода 20С давлением на 1,3 превышающем максимальное заданное Заказчиком и выдерживается в течение 30 минут. Затем по нагреваемой стороне производится аналогичное действие. При этом осуществляется визуальный контроль на наличие протечек и снимаются показания манометров. После успешного прохождения гидроиспытания в паспорте теплообменника (неотъемлемая часть поставки) делается соответствующая пометка специалистом Отдела Технического Контроля. Таким образом, мы предлагаем Вам уже проверенное нами оборудование полностью готовое к работе.

Конструкция разборного теплообменника


Разборный теплообменник состоит из следующих элементов:

Назначение пластинчатых теплообменников
Рисунок 2 – Конструкция пластинчатого теплообменнника

ПТ состоит из:

  • пакета тонких прямоугольных пластин с отверстиями, через которые протекают два потока жидкости, где происходит теплопередача. Пластины теплообменного аппарата, выполнены из нержавеющей стали или титана, прижимаются друг к другу с использованием уплотнительных прокладок. Количество пластин зависит от технических параметров и требований к оборудованию.
  • рамная пластина (неподвижная прижимная плита),
  • прижимная пластина (подвижная прижимная плита), прижимает весь пакет к неподвижной прижимной плите с помощью элементов крепления: стяжных болтов, подшипников, стопорных шайб.
  • несущая база – направляющая балка, на которую надеваются пластины во время сборки агрегата.
  • опорная станина – вертикальный элемент, к которому прикрепляются направляющие балки (верхняя и нижняя несущие балки).
  • верхние и нижние стержни и винты для сжатия пакета пластин.

Индивидуальный пластинчатый теплообменник может вместить до 700 пластин. Когда пакет пластин сжимается, отверстия в углах пластин образуют непрерывные туннели или коллекторы, через которые текучие среды проходят, пересекая пакет пластин и выходя из оборудования. Промежутки между тонкими пластинами теплообменника образуют узкие каналы, которые попеременно пересекаются горячей и холодной жидкостями и обеспечивают небольшое сопротивление теплопередаче.

Типы теплообменных пластин

Пластины теплообменника отличаются друг от друга видом профиля (гофра).

Пластина с большим углом профиля (пластина типа H) позволяет обеспечить

  • — высокая турбулизация потока
  • — высокий коэффициент теплопередачи
  • — высокие потери давления

Пластина с малым углом профиля (пластина типа L) позволяет обеспечить

  • — низкая турбулизация потока
  • — низкий (относительно H пластины) коэффициент теплопередачи
  • — низкие потери давления

Выбирая теплообменник, мы решаем проблему оптимального подбора оборудования к вашим условиям. Два типа пластин позволяют осуществить три типа каналов.

  • – канал с большим углом профиля. Комбинация пластин только типа H.
  • – канал со средним углом профиля. Комбинация пластин типов H и L.
  • – канал с малым углом профиля. Комбинация пластин только типа L.

Инновационные решения компании LHE в области теплообмена позволяют производить теплообменные пластины толщиной до 1мм с разными углами наклона профиля и разной глубины штамповки. Возможно изготовление пластин эксклюзивно под заказ.

Типовые пластины и прокладки

Пластины

Самая важная и самая дорогая часть ПТ – это его термические пластины, которые изготавливаются из металла, металлического сплава или даже специальных графитовых материалов, в зависимости от области применения.

Примеры материалов для изготовления ПТ, обычно встречающиеся в промышленном применении:

  • нержавеющая сталь,
  • титан,
  • никель,
  • алюминий,
  • инколой,
  • хастеллой,
  • монель,
  • тантал.

Пластины могут быть плоскими, но в большинстве случаев имеют гофры, которые оказывают сильное влияние на теплогидравлические характеристики устройства. Некоторые из основных типов пластин показаны на рисунке 3, хотя большинство современных ПТ используют шевронные типы пластин.

Назначение пластинчатых теплообменников
Рисунок 3 – Типичные категории пластинчатых гофр: (а) стиральная доска, (б) зигзагообразная, (в) шевронная или елочка, (г) выступы и углубления, (д) стиральная доска со вторичными гофрами, (е) косая стиральная доска.

Каналы, образованные между соседними пластинами, создают закрученное движение для жидкостей, как видно на рисунке 4.

Рисунок 4 – Турбулентный поток в каналах пластинчатого теплообменника

Угол шеврона обращен в смежных листах, так что, когда пластины затягиваются, гофры обеспечивают многочисленные точки контакта, которые поддерживают оборудование. Уплотнение пластин достигается прокладками, установленными по периметру.


Назначение пластинчатых теплообменников
Рисунок 5 – Технические характеристики пластин

Прокладки

Прокладки обычно представляют собой формованные эластомеры, выбранные на основе их совместимости с жидкостью и условий температуры и давления. Многопроходные устройства могут быть реализованы в зависимости от расположения прокладок между пластинами. Бутиловые или нитрильные каучуки – это материалы, обычно используемые при изготовлении прокладок.

Назначение пластинчатых теплообменников
Рисунок 6 – Технические характеристики прокладок

Принцип работы и схема агрегата

Устройство, расчет и промывка пластинчатых теплообменников для отопления основываются на том, что узел функционирует благодаря наличию 4 отверстий:

  • 2 отверстия для притока и отвода горячей рабочей среды;
  • 2 отверстия для обеспечения герметичной стыковки пластин и предотвращения смешивания теплоносителей – данную задачу выполняют уплотнители.

Движение жидкости в агрегате осуществляется по принципу завихрения потока. В результате из-за относительно небольшого сопротивления движению рабочей среды усиливается интенсивность передачи тепловой энергии. Также вследствие небольшого сопротивления при прохождении жидкости уменьшается количество накипи во внутренних полостях.

Пластинчатый теплообменник
Как выглядит пластинчатый теплообменник

Принцип работы пластинчатого теплообменника, базирующийся на петлях и завихрениях, способствует многократному обмену энергией. В результате достигается максимальный КПД агрегата, на что оказывает положительное влияние и вывод патрубков в оба виды панелей – прижимные и неподвижные.

Устройство теплообменника идеально соответствует условиям эксплуатации: количество пластин увеличивается соразмерно потенциальным потребностям в мощности системы. Число рабочих элементов оказывает прямое влияние на КПД и производительность отопительного или охлаждающего оборудования.

Особенности котлов с битермическими теплообменниками

Популярность котлов, имеющих радиаторы битермиче6ской направленности, сегодня очевидна. Современные производители, разные лидирующие компании используют собственные комплектующие (на 6 трубок) и интересные разработки (плавная регулировка горения, охлаждение и др.). Например, бренды:

  • Immegras, Италия;
  • Protherm, Словакия;
  • Vaillant, Германия;
  • Navien, Корея;
  • Ferroli, Италия.

Секционное расширение позволяет увеличить показатели теплоотдачи, располагать приспособление очень близко к горелке с открытым пламенем, в сравнении с устройствами на 4 или 5 трубок. Расширенные варианты выдают по мощности уже не 15-18 кВт, а 24 кВт, что подходит не для жилого дома, а больше для производственных или административных помещений.

Достоинства и недостатки

Достоинства

  1. Гибкость: простая разборка позволяет адаптировать ПТ к новым технологическим требованиям путем простого добавления или удаления пластин, или изменения количества проходов. Кроме того, разнообразие моделей пластинчатых гофр, доступных вместе с возможностью использования их комбинаций в одном и том же ПТ, означает, что различные конформации блока могут быть протестированы в ходе процедур оптимизации.
  2. Хороший контроль температуры: благодаря узким каналам, образованным между соседними пластинами, в ПТ содержится лишь небольшой объем жидкости. Таким образом, устройство быстро реагирует на изменения технологических условий с коротким временем запаздывания, так что температура легко контролируется. Это важно, когда необходимо избегать высоких температур. Кроме того, форма каналов уменьшает возможность возникновения застойных зон (мертвого пространства) и зон перегрева.

  3. Низкая стоимость производства: поскольку пластины только спрессовываются (или склеиваются) вместе, а не свариваются, производство ПТ может быть относительно недорогим. Для изготовления пластин могут быть использованы специальные материалы, чтобы сделать их более устойчивыми к коррозии и/или химическим реакциям.
  4. Эффективная теплопередача: гофры пластин и малый гидравлический диаметр усиливают образование турбулентного потока, так что для жидкостей можно получить высокие скорости теплопередачи. Следовательно, до 90% тепла может быть восстановлено, по сравнению только с 50% в случае кожухотрубных теплообменников.
  5. Компактность: высокая тепловая эффективность ПТ означает, что они имеют очень малую площадь. При той же площади теплопередачи ПТ часто могут занимать на 80% меньшую площадь (иногда в 10 раз меньше), чем кожухотрубные теплообменники (Рисунок 7).
  6. Уменьшение загрязнения: уменьшение загрязнения происходит в результате сочетания высокой турбулентности и короткого времени пребывания жидкости. Поправочные коэффициенты на загрязнения для ПТ могут быть в десятки раз ниже, чем для кожухотрубных теплообменников.
  7. Простота осмотра и очистки: поскольку компоненты PHE могут быть разделены, можно очистить и проверить все детали, которые подвергаются воздействию жидкостей. Эта особенность необходима в пищевой и фармацевтической промышленности.
  8. Простое обнаружение утечек: прокладки имеют вентиляционные отверстия (рисунок 8), которые предотвращают смешивание жидкостей в случае отказа, что также облегчает обнаружение утечек.

Кстати, прочтите эту статью тоже: Сварной пластинчатый теплообменник (Блок)

Назначение пластинчатых теплообменников
Рисунок 7 – Иллюстрация типичной разницы размеров между ПТ и кожухотрубным теплообменником для заданной тепловой нагрузки

Назначение пластинчатых теплообменников
Рисунок 8 – Вентиляционные каналы в прокладках для обнаружения возможных утечек

Недостатки

  1. Ограничения температуры и давления: важное ограничение ПТ связано с пластинчатыми прокладками. Давление и температура, превышающие 25 атм и 160 °С соответственно, недопустимы, поскольку они могут привести к утечке стандартных прокладок. Однако прокладки, изготовленные из специальных материалов, выдерживают температуру до 400 °С, и есть возможность приварить или припаять пластины друг к другу, чтобы работать в более тяжелых условиях. Это имело бы дополнительные преимущества увеличения эксплуатационных пределов, а также возможность работы с агрессивными жидкостями, поскольку это исключило бы необходимость в прокладках. Однако ПТ утратит свои основные преимущества гибкости и простоты очистки, а оборудование станет более дорогим.
  2. Высокий перепад давления: из-за гофрированных пластин и небольшого пространства потока между ними перепад давления из-за трения высок, что увеличивает затраты на перекачку. Падение давления может быть уменьшено путем увеличения числа проходов за проход и разделения потока на большее число каналов. Это уменьшает скорость потока в канале, следовательно, уменьшая коэффициент трения. Однако коэффициент конвективной теплопередачи также снижается, что снижает эффективность работы теплообменника.
  3. Фазовый переход: в особых случаях ПТ могут использоваться в операциях конденсации или испарения, но не рекомендуются для газов и паров из-за ограниченного пространства внутри каналов и ограничений давления.
  4. Типы жидкостей: обработка жидкостей, которые являются высоковязкими или содержат волокнистый материал, не рекомендуется из-за высокого перепада давления и проблем распределения потока внутри ПТ. Следует также учитывать совместимость между жидкостью и материалом прокладки. Следует избегать легковоспламеняющихся или токсичных жидкостей из-за возможности утечки.
  5. Утечка: трение между металлическими пластинами может вызвать износ и образование небольших отверстий, которые трудно обнаружить. В качестве меры предосторожности рекомендуется нагнетать технологическую жидкость под давлением, чтобы уменьшить риск загрязнения в случае утечки из пластины.

Использованные источники

  1. stroi-mario.ru/ustrojstva/ustrojstvo-plastinchatogo-teploobmennika.html
  2. teploobmen.ru/catalog/teploobmenniki/
  3. teploprofi.com/naznachenie-teploobmennikov/

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.