Мощность батарей отопления


Для создания комфорта в доме обязательным условием является наличие современной системы отопления. Качество её работы зависит от многих факторов, например, надёжности всех материалов и комплектующих. Немаловажно в первую очередь правильно рассчитать мощность радиаторов отопления.

радиатор_кот
Для начала нужно рассчитать мощность радиаторов

Разновидности радиаторов

На сегодняшний день самая популярная схема отопления состоит из трёх основных элементов: котёл нагрева (твердотопливные, газовые, электрические или альтернативные подвиды), трубы и радиаторы, по которым транспортируется теплоноситель (антифриз или вода). На первый взгляд, выглядит всё очень просто. Батареи устанавливаются под окном и нагревают помещение. Но здесь есть несколько нюансов. Мощность радиатора должна соответствовать квадратуре комнаты.

Все расчёты подобного типа должны проводиться по нормам СНиП. Процедура довольно сложная и выполняется исключительно специалистами в этой области. Но если воспользоваться несколькими советами, то такие расчёты можно провести и самостоятельно.


Сегодня на рынке можно найти множество разновидностей стальных радиаторов. Основные из них:

  • чугунные радиаторы;
  • алюминиевые радиаторы (несколько подвидов);
  • стальные радиаторы (трубчатая или панельная схема);
  • биметаллические радиаторы.

В этом видео вы узнаете, как рассчитать мощность радиатора:

Стальные батареи

Такие варианты на сегодня не пользуются большой популярностью, даже с учётом эстетически красивого внешнего оформления. Стенки батарей очень тонкие, поэтому они быстро нагреваются и остывают. При высоком давлении сварные швы могут не выдержать, и радиатор потечёт. Также более дешёвые модели, которые не имеют специального антикоррозионного покрытия, могут быстро ржаветь. Как правило, производители не дают длительную гарантию на такие изделия.

В большинстве случаев стальные радиаторы состоят из одной цельной плиты, поэтому изменять теплоотдачу корректировкой числа секций не выйдет. Нужно отталкиваться от квадратуры и выбирать комплектующие по установленной паспортной мощности. В некоторых моделях трубчатого типа можно изменять количество секций, но это в большей степени исключение. Подобные работы самостоятельно сделать не получится, нужно будет заказывать работу у мастера.


радиатор_сталь
Обычно, стальные радиаторы состоят из 1 плиты

Чугунные модели

Этот вариант знаком многим, так как именно такие батареи устанавливались со времён Советского союза до начала ХХ века. В народе их ещё называют «гармошками». Хотя они и не выглядят красиво, но зато имеют долгий срок эксплуатации. Каждое ребро батареи имеет теплоотдачу в 160 Вт. Количество секций никак не ограничено, поэтому собираться радиатор может по частям. Сегодня можно увидеть на рынке современные аналоги чугунных радиаторов.

При этом своих изначальных преимуществ они не теряют:

  • высокая теплоёмкость, благодаря которой температура сохраняется долгое время, а отдача тепла довольно высокая;
  • если всю систему правильно собрать, то чугунные элементы не будут «бояться» гидроударов и перепадов температур;
  • стенки довольно толстые, ржаветь они не будут.

В качестве носителя тепла может выступать любая жидкость, поэтому они хороши как для автономной системы отопления, так и для централизованной. Но у них есть и некоторые недостатки. Во-первых, плохой внешний вид и сложность монтажа. Во-вторых, чугун — довольно хрупкий материал и точечные гидроудары может не выдержать. Кроме того, большая масса таких батарей не позволит их установить на любую стену.

радиатор_чугун
У данных батарей высокая теплообменность

Алюминиевые изделия

Алюминиевые радиаторы появились относительно недавно, но за короткое время успели завоевать популярность среди покупателей. У них отличная теплоотдача, они имеют привлекательный внешний вид и достаточно просты в установке и эксплуатации. Но при их выборе необходимо обратить внимание на некоторые нюансы.

Алюминиевые модели могут выдерживать температуру до 100°C и давление до 15 атмосфер. При этом теплоотдача одной секции может достигать 200 Вт. Также с массой одной секции около 2 кг они не требуют больших объёмов теплоносителя (до 500 мл). Сегодня на рынке есть изделия с возможностью деления секций и цельные конструкции с уже рассчитанной мощностью.

Они также имеют свои недостатки:


  1. Алюминиевые радиаторы могут подвергаться кислородной коррозии, поэтому их можно устанавливать только на автономные системы отопления, поскольку они очень требовательны к теплоносителю.
  2. Некоторые модели, состоящие из цельного полотна, при определённых условиях могут протекать в области соединительных элементов, при этом заменить их не получится, нужно будет менять батарею целиком.

Из всех возможных вариаций алюминиевые радиаторы самые качественные и надёжные изделия, при производстве которых применялась технология анодного оксидирования металла. Они практически полностью избавлены от кислородной коррозии. Внешний вид таких изделий независимо от технологии производства одинаковый. В связи с этим нужно особенно тщательно обращать при выборе внимание на техническую документацию.

Биметаллические материалы

Такие изделия на сегодняшний день являются идеальным вариантом по всем параметрам. По надёжности они не уступают чугунным аналогам, а теплоотдача у них на уровне алюминиевых радиаторов. Связано это с их конструктивными особенностями.


Конструкция состоит из двух стальных коллекторов (верхнего и нижнего) и соединительных каналов между ними. Соединяются все элементы между собой муфтами высокого качества. Благодаря внешней алюминиевой оболочке теплоотдача остаётся на высоком уровне. Внутренняя часть труб сделана из металла, который не подвергается коррозии или имеет антикоррозийное покрытие. Алюминиевая ёмкость для теплообмена не подвержена коррозии, так как не контактирует с теплоносителем.

Конструкция имеет высокий уровень надёжности, и довольно большую теплоотдачу.

Биметаллические батареи не боятся скачков температуры и давления. Они более эффективны именно при высоком давлении, так как в системе с естественной циркуляцией они бесполезны. Если говорить о недостатках, то можно отметить только высокую стоимость.

Расчет мощности

Установленный радиатор должен полностью обеспечивать прогрев воздуха в комнате до нужных показателей. Основной величиной при расчёте мощности батарей отопления является площадь комнаты. Сами по себе расчёты по нормам СНиП весьма сложные. Неопытному человеку самостоятельно сделать сложный расчет не получится, но для бытовых нужд можно воспользоваться и упрощённой формулой.

Для создания комфортных условий проживания и достаточного количества тепла на один квадратный метр нужно примерно 100 Вт мощности. Поэтому для вычисления общего количества Ватт необходимо квадратуру комнаты умножить на 100. Можно использовать простейшую формулу: Т = П х 100.


Т — это необходимая теплоотдача от батареи, а П — площадь комнаты. Таких расчётов будет достаточно для радиаторов, состоящих из неразборных секций. На них необходимо ориентироваться при выборе материала, смотреть показатели изделия в его паспорте.


В случае покупки разборных батарей следует применять ещё одну формулу: К = Т / М1.

К — количество секций изделия, а М1 — мощность одной секции. Такие формулы не являются сложными, ими сможет воспользоваться человек без соответствующего образования с начальными знаниями физики и математики. Необходимо просто измерить рулеткой квадратуру комнаты и подготовить листок бумаги и ручку для вычислений. Также можно пользоваться специальной таблицей, где уже указанны все расчёты на определённую площадь помещения.

Источник: kaminguru.com

Упрощенный расчет компенсации теплопотерь

Любые вычисления базируются на определенных принципах. В основу расчетов требуемой тепловой мощности батарей закладывается понимание того, что хорошо работающие нагревательные приборы должны полностью компенсировать потери тепла, возникающие при их работе из-за особенностей отапливаемых помещений.


Для жилых комнат, находящихся в хорошо утепленном доме, расположенном, в свою очередь, в умеренном климатическом поясе, в некоторых случаях подойдет упрощенный расчет компенсации тепловых утечек.

Для таких помещений вычисления основываются на нормативной мощности 41 Вт, требующейся для обогрева 1 куб.м. жилого пространства.

Формула для определения тепловой мощности радиаторов, необходимой для поддержания в помещении оптимальных условий проживания такова:

Q = 41 х V,

где V – объем отапливаемой комнаты в кубических метрах.

Полученный четырехзначный результат можно выразить в киловаттах, сократив его из расчета 1 кВт = 1000 Вт.

Подробная формула вычисления тепловой мощности

При подробных расчетах количества и размеров батарей отопления принято отталкиваться от относительной мощности 100 Вт, нужной для нормального обогрева 1 м² некоего нормативного помещения.

Формула для определения требуемой от отопительных приборов тепловой мощности такова:

Q = ( 100 x S ) x R x K x U x T x H x W x G x X x Y x Z

Множитель S в вычислениях не что иное, как площадь отапливаемого помещения, выраженная в квадратных метрах.

Остальные буквы – это различные поправочные коэффициенты, без которых расчет будет ограниченным.


Но даже добавочные расчетные параметры не всегда могут отразить всю специфику того или другого помещения. Рекомендуется при сомнениях в подсчетах отдавать предпочтение показателям с большими значениями.

Легче потом снизить температуру радиаторов с помощью терморегулирующих приборов, чем замерзать при недостатке их тепловой мощности.

Далее подробно разбирается каждый из участвующих в формуле расчета тепловой мощности батарей коэффициентов.

В конце статьи дается информация по характеристикам разборных радиаторов из разных материалов, и рассматривается порядок вычислений необходимого количества секций и самих батарей на базе основного расчета.

Ориентация комнат по сторонам света

И в самые морозные дни энергия солнца все же влияет на тепловое равновесие внутри жилища.

От направленности комнат в ту или иную сторону зависит коэффициент «R» формулы расчета тепловой мощности.

  1. Комната с окном на юг – R = 1,0. В течение светового дня она будет получать максимальное добавочное внешнее тепло по сравнению с другими помещениями. Такая ориентация принимается за базовую, и добавочный параметр в данном случае минимальный.
  2. Окно выходит на запад – R = 1,0 или R = 1,05 (для районов с коротким зимним днем). Эта комната тоже успеет получить свою порцию солнечного света. Солнце хоть и заглянет туда ближе к вечеру, но все же расположение такого помещение более выгодное, чем восточное и северное.

  3. Комната ориентирована на восток – R = 1,1. Восходящее зимнее светило вряд ли успеет как следует извне подогреть такое помещение. Для мощности батарей потребуются дополнительные Ватты. Соответственно добавляем к расчету ощутимую поправку в 10%.
  4. За окном находится только север – R = 1,1 или R = 1,15 (не ошибется житель северных широт, который возьмет дополнительно 15%). Зимой такое помещение прямых солнечных лучей не видит совсем. Поэтому рекомендуется вычисления требуемой от радиаторов тепловой отдачи также скорректировать на 10% в большую сторону.

Если в районе проживания преобладают ветры определенного направления, желательно для комнат с наветренными сторонами произвести увеличение R еще до 20% в зависимости от силы дуновения (х1,1÷1,2), а для помещений со стенами, параллельными холодным потокам, приподнять значение R на 10% (х1,1).

Учет влияния внешних стен

Кроме стены со встроенным в него окном или окнами, другие стены комнаты также могут иметь контакт с уличным холодом.

Внешние стены помещения определяют коэффициент «K» расчетной формулы тепловой мощности радиаторов:

  • Наличие у помещения одной уличной стены является типовым случаем. Здесь с коэффициентом все просто – K = 1,0.
  • Две внешних стены запросят для обогрева комнаты на 20% больше тепла – K = 1,2.
  • Каждая следующая наружная стена добавляет вычислениям по 10 % требуемой теплоотдачи. Для трех уличных стен – K = 1,3.
  • Наличие у помещения четырех внешних стен также добавляет 10% – K = 1,4.

В зависимости от особенностей помещения, для которого выполняется расчет, предстоит взять соответствующий коэффициент.

Зависимость радиаторов от теплоизоляции

Снизить бюджет на обогрев внутреннего пространства позволяет грамотно и надежно изолированное от зимней стужи жилье, причем существенно.

Степени утепления уличных стен подчиняется коэффициент «U», уменьшающий или увеличивающий расчетную тепловую мощность нагревательных приборов:

  • U = 1,0 – для стандартных внешних стен.
  • U = 0,85 – если утепление уличных стен производилось по специальному расчету.
  • U = 1,27 – если внешние стены недостаточно холодоустойчивы.

Стандартными считаются стены из соответствующих климату материалов и толщины. А также уменьшенной толщины, но с оштукатуренной наружной поверхностью или с поверхностной наружной теплоизоляцией.

Если разрешает площадь помещения, то можно произвести утепление стен изнутри. А оградить стены от холода снаружи способ найдется всегда.

Климат – важный фактор арифметики

Разные климатические зоны имеют различные показатели минимально низких уличных температур.

При расчете мощности теплоотдачи радиаторов для учета температурных отличий предусмотрен коэффициент «T».

Рассмотрим значения этого коэффициента для различных климатических условий:

  • T = 1,0 до -20 °С.
  • T = 0,9 для зим с морозцем до -15 °С
  • T = 0,7 – до -10 °С.
  • T = 1,1 для морозов до -25 °С,
  • T = 1,3 – до -35 °С,
  • T = 1,5 – ниже -35 °С.

Как видим из перечня, приведенного выше, нормальной считается зимняя погода до -20 °С. Для районов с таким наименьшим холодом берут значение, равное 1.

Для более теплых регионов этот расчетный коэффициент понизит общий результат вычислений. А вот для областей сурового климата требуемое от отопительных приборов количество теплоэнергии возрастет.

Особенности обсчета высоких помещений

Понятно, что из двух комнат с одинаковой площадью больше тепла потребуется той, у которой потолок выше. Учесть в вычислениях тепловой мощности поправку на объем отапливаемого пространства помогает коэффициент «H».

В начале статьи было упомянуто про некое нормативное помещение. Таковым считается комната с потолком на уровне 2,7 метра и ниже. Для нее берут значение коэффициента, равное 1.

Рассмотрим зависимость коэффициента Н от высоты потолков:

  • H = 1,0 – для потолков в 2,7 метра высотой.
  • H = 1,05 – для помещения высотой до 3 метров.
  • H = 1,1 – для комнаты с потолком до 3,5 метра.
  • H = 1,15 – до 4 метров.
  • H = 1,2 – потребность в тепле для более высокого помещения.

Как видим, для комнат с высокими потолками в расчет следует добавлять по 5% на каждые полметра высоты, начиная с 3,5 м.

По закону природы теплый нагретый воздух устремляется вверх. Чтобы перемешать весь его объем отопительным приборам придется потрудиться как следует.

Расчетная роль потолка и пола

К уменьшению тепловой мощности батарей ведут не только хорошо изолированные внешние стены. Соприкасающийся с теплым помещением потолок также позволяет минимизировать потери при обогреве комнаты.

Коэффициент «W» в формуле расчета как раз для того, чтобы предусмотреть это:

  • W = 1,0 – если наверху расположен, например, неотапливаемый неутепленный чердак.
  • W = 0,9 – для неотапливаемого, но утепленного чердака или другого утепленного помещения сверху.
  • W = 0,8 – если этажом выше комната отапливаемая.

Показатель W можно поправлять в сторону увеличения для помещений первого этажа, если они располагаются на грунте, над неотапливаемым подвалом или цокольным пространством. Тогда цифры будут такие: пол утеплен +20% (х1,2); пол не утеплен +40% (х1,4).

Качество рам – залог тепла

Окна – когда-то слабое место в теплоизоляции жилого пространства. Современные рамы со стеклопакетами позволили существенно улучшить защиту комнат от уличного холода.

Степень качества окон в формуле подсчета тепловой мощности описывает коэффициент «G».

За основу расчета взята стандартная рама с однокамерным стеклопакетом, у которой коэффициент равен 1.

Рассмотрим другие варианты применения коэффициента:

  • G = 1,0 – рама с однокамерным стеклопакетом.
  • G = 0,85 – если рама оснащена двух- или трехкамерным стеклопакетом.
  • G = 1,27 – если у окна старая деревянная рама.

Так, если в доме старые рамы, то потери тепла будут значительными. Поэтому потребуются более мощные батареи. В идеале такие рамы желательно заменить, ведь это дополнительные расходы на отопление.

Размер окна имеет значение

Следуя логике, можно утверждать, что чем больше количество окон в комнате и чем обширней их обзор, тем чувствительней утечки тепла через них. Коэффициент «X» из формулы расчета тепловой мощности, требующегося от батарей, как раз отражает это.

Нормой является итог деления площади оконных проемов на площадь комнаты равный от 0,2 до 0,3.

Приведем основные значения коэффициента Х для различных ситуаций:

  • X = 1,0 – при соотношении от 0,2 до 0,3.
  • X = 0,9 – для отношения площадей от 0,1 до 0,2.
  • X = 0,8 – при соотношении до 0,1.
  • X = 1,1 – если отношение площадей от 0,3 до 0,4.
  • X = 1,2 – когда оно от 0,4 до 0,5.

Если же метраж оконных проемов (например, в помещениях с панорамными окнами) выходит за рамки предложенных соотношений, разумно добавлять к значению X еще по 10% при росте отношения площадей на 0,1.

Находящаяся в комнате дверь, которой зимой регулярно пользуются для выхода на открытый балкон или лоджию, вносит свои поправки в баланс тепла. Для такого помещения будет правильным увеличить X еще на 30% (х1,3).

Потери тепловой энергии легко компенсируются компактной установкой под балконным входом канального водяного или электрического конвектора.

Влияние закрытости батареи

Конечно же, лучше отдаст тепло тот радиатор, который меньше огражден различными искусственными и естественными препятствиями. На этот случай формула расчета его тепловой мощности расширена за счет коэффициента «Y», учитывающего условия работы батареи.

Самое распространенное место расположения отопительных приборов – под подоконником. При таком их положении значение коэффициента равно 1.

Рассмотрим типичные ситуации размещения радиаторов:

  • Y = 1,0 – сразу под подоконником.
  • Y = 0,9 – если батарея оказывается вдруг полностью открытой со всех сторон.
  • Y = 1,07 – когда радиатор заслонен горизонтальным выступом стены
  • Y = 1,12 – если расположенная под подоконником батарея прикрыта фронтальным кожухом.
  • Y = 1,2 – когда отопительный прибор загражден со всех сторон.

Сдвинутые длинные плотные шторы также становятся причиной похолодания в комнате.

Эффективность подключения радиаторов

От способа присоединения радиатора к внутрикомнатной отопительной разводке напрямую зависит эффективность его работы. Часто хозяева жилья жертвуют этим показателем в угоду красоте помещения. Формула расчета требуемой тепловой мощности учитывает все это через коэффициент «Z».

Приведем значения этого показателя для различных ситуаций:

  • Z = 1,0 – включение радиатора в общую цепь отопительной системы приемом «по диагонали», что является самым оправданным.
  • Z = 1,03 – другой, самый распространенный из-за малой протяженности подводки, вариант присоединения «с боковой стороны».
  • Z = 1,13 – третий метод «снизу с двух сторон». Благодаря пластиковым трубам, это он быстро прижился в новом строительстве, несмотря на гораздо меньшую эффективность.
  • Z = 1,28 – еще один, очень низкоэффективный способ «снизу с одной стороны». Он заслуживает рассмотрения только потому, что некоторые конструкции радиаторов снабжаются готовыми узлами с подключением к одной точке труб и подачи, и обратки.

Увеличить коэффициент полезного действия отопительных приборов помогут вмонтированные в них воздухоотводчики, которые своевременно спасут систему от «завоздушивания».

Принцип работы любого водяного отопительного прибора опирается на физические свойства горячей жидкости подниматься вверх, а после охлаждения перемещаться вниз.

Поэтому настоятельно не рекомендуется использовать присоединения систем отопления к радиаторам, при которых труба подачи оказывается внизу, а обратки – вверху.

Практический пример расчета тепловой мощности

Исходные данные:

  1. Угловая комната без балкона на втором этаже двухэтажного шлакоблочного оштукатуренного дома в безветренном районе Западной Сибири.
  2. Длина комнаты 5,30 м Х ширина 4,30 м = площадь 22,79 кв.м.
  3. Ширина окна 1,30 м Х высота 1,70 м = площадь 2,21 кв.м.
  4. Высота помещения = 2,95 м.

Последовательность расчета:

Ниже приводится описание расчета количества секций радиаторов и требуемого числа батарей. Он основывается на полученных результатах тепловых мощностей с учетом габаритов предполагаемых мест установки отопительных приборов.

Независимо от итогов, рекомендуется в угловых комнатах оснащать радиаторами не только подоконные ниши. Батареи следует устанавливать у «слепых» внешних стен или возле углов, которые подвергаются наибольшему промерзанию под воздействием уличного холода.

Удельная тепловая мощность секций батарей

Еще до выполнения общего расчета требуемой теплоотдачи отопительных приборов, необходимо решить, разборные батареи из какого материала будут устанавливаться в помещениях.

Выбор должен основываться на характеристиках системы отопления (внутреннее давление, температура теплоносителя). При этом не стоит забывать о сильно разнящейся стоимости покупаемых изделий.

О том, как правильно рассчитать нужное количество различных батарей для отопления, и пойдет речь дальше.

При теплоносителе в 70 °С стандартные 500-миллиметровые секции радиаторов из разнородных материалов обладают неодинаковой удельной тепловой мощностью «q».

  1. Чугун – q = 160 Ватт (удельная мощность одной чугунной секции). Радиаторы из этого металла подойдут для любой системы отопления.
  2. Сталь – q = 85 Ватт. Стальные трубчатые радиаторы могут работать в самых жестких условиях эксплуатации. Их секции красивы в своем металлическом блеске, но имеют наименьшую теплоотдачу.
  3. Алюминий – q = 200 Ватт. Легкие, эстетичные алюминиевые радиаторы надо устанавливать лишь в автономные отопительные системы, в которых давление меньше 7 атмосфер. Но по отдаче тепла их секциям нет равных.
  4. Биметалл – q = 180 Ватт. Внутренности биметаллических радиаторов сделаны из стали, а теплоотводящая поверхность – из алюминия. Эти батареи выдержат всякие режимы давлений и температур. Удельная тепловая мощность секций из биметалла тоже на высоте.

Приведенные значения q довольно условны и применяются для предварительного расчета. Более точные цифры содержатся в паспортах приобретаемых отопительных приборов.

Расчет количества секций радиаторов

Разборные радиаторы из любого материала хороши тем, что для достижения их расчетной тепловой мощности можно добавлять или убавлять отдельные секции.

Для определения нужного количества «N» секций батарей из выбранного материала придерживаются формулы:

N = Q / q,

Где:

  • Q = рассчитанная ранее требуемая тепловая мощность устройств для обогрева комнаты,
  • q = мощность тепловая удельная отдельной секции предполагаемых для установки батарей.

Вычислив общее необходимое число секций радиаторов в помещении, надо понять, сколько всего батарей нужно установить. Этот расчет основывается на сравнении габаритов предполагаемых мест установки отопительных приборов и размеров батарей с учетом подводки.

Для предварительных подсчетов можно вооружиться данными о ширине секций разных радиаторов:

  • чугунных = 93 мм,
  • алюминиевых = 80 мм,
  • биметаллических = 82 мм.

При изготовлении разборных радиаторов из стальных труб, производители не держатся за определенные стандарты. При желании поставить такие батареи, следует подходить к вопросу индивидуально.

Также можете воспользоваться нашим бесплатным онлайн калькулятором для расчета количества секций:

Повышение эффективности теплоотдачи

При обогреве радиатором внутреннего воздуха помещения происходит также интенсивный нагрев внешней стены в области за батареей. Это ведет к дополнительным неоправданным потерям тепла.

Предлагается для повышения эффективности теплоотдачи радиатора отгораживать отопительный прибор от наружной стены теплоотражающим экраном.

Рынок предлагает множество современных изоляционных материалов с отражающей тепло фольгированной поверхностью. Фольга защищает согретый батареей теплый воздух от контакта с холодной стеной и направляет его внутрь комнаты.

Для правильной работы границы установленного отражателя должны превышать габариты радиатора и с каждой стороны на 2-3 см выступать. Промежуток между отопительным прибором и поверхностью тепловой защиты следует оставлять величиной 3-5 см.

Для изготовления теплоотражающего экрана можно посоветовать изоспан, пенофол, алюфом. Из приобретенного рулона вырезается прямоугольник необходимых размеров и закрепляется на стене в месте установки радиатора.

Рекомендуется отделять лист изоляции от внешней стены небольшой воздушной прослойкой, например, с помощью тонкой пластиковой решетки.

Если отражатель стыкуется из нескольких частей изоляционного материала, места соединений со стороны фольги необходимо проклеивать металлизированной клейкой лентой.

Выводы и полезное видео по теме

Небольшие фильмы представят практическое воплощение некоторых инженерных советов в быту. В следующем ролике можно увидеть практический пример расчета радиаторов отопления:

Изменение количества секций радиаторов рассмотрено в этом видео:

Следующий ролик поведает о том, как монтировать отражатель под батарею:

Приобретенные навыки расчёта тепловой мощности разных видов радиаторов отопления помогут домашнему мастеру в грамотном устройстве отопительной системы. А домашние хозяйки смогут проконтролировать правильность процесса установки батарей сторонними специалистами.

Вы занимались самостоятельным расчетом мощности батарей отопления для своего дома? Или столкнулись с проблемами, возникшими в результате монтажа маломощных отопительных приборов? Расскажите о своем опыте нашим читателям – оставляйте, пожалуйста, комментарии ниже.

Источник: sovet-ingenera.com

Тепловая мощность радиатора зависит от множества факторов и при выборе отопительного прибора в конкретное помещение необходимо учитывать все из них. Как правило, в техническом паспорте на конкретный радиатор указываются условия, при которых он выходит на расчетную тепловую мощность — это температурные режимы (чаще всего предполагается, что в помещении +20 градусов, подача в радиатор +90 градусов, а обратка +70 градусов). От этих данных мы и будем отталкиваться в дальнейших рассуждениях, и рассмотрим все причины, которые могут изменить фактическую мощность радиатора.

Правильные подбор и монтаж радиатора с учетом всех влияющих факторов — залог хорошо прогретой комнаты

1. Один из важнейших факторов, влияющих на тепловую мощность радиатора — фактические температуры подачи и обратки на входе в радиатор. Ведь чем больше разница между средней температурой теплоносителя в радиаторе с температурой помещения, тем больше у него мощность.

На скриншоте приведены мощности некоторых моделей стальных панельных радиаторов 33 типа в зависимости от разных температурных режимов.

Пример: если взять два радиатора в одном помещении с температурой +20 градусов, в первый подавать теплоноситель с температурой +90 градусов (подача) и +70 градусов (обратка), а во второй +75 и +65 градусов соответственно, то второй радиатор будет иметь тепловую мощность примерно на 20% меньше.

2. Второй, не менее важный фактор назовем — "гидравлика". Чем выше расход теплоносителя, протекающий через радиатор, тем больше в него поступает "тепла", и тем меньше он остывает. А вот "гидравлика" может быть "плохой", если: неправильно подобрали насос, неправильно подобрали диаметр трубопроводов, вместо воды в систему залили вязкий антифриз (не забудьте прочитать статью про выбор теплоносителя), и некоторые другие факторы.

Съемка тепловизиром помогает понять суть этого вопроса. Здесь нагретый теплоноситель уходит по байпасу (справа от радиатора), а прогретой является только первая секция радиатора.

3. Третий фактор — способ подключения радиатора. Радиатор лучше всего отдает тепловую энергию, когда он равномерно прогрет. А максимально равномерно он прогревается при диагональном подключении. Хуже — при боковом подключении. Понять суть этого вопроса можно, посмотрев на тепловизионную съемку радиаторов с разным подключением.

На этом снимке приведено боковое седельное подключение радиатора. Видно, что радиатор равномерно прогрет

4. Четвертый фактор — наличие декоративных экранов и решеток. Тут все просто — они мешают радиатору эффективно отдавать тепло воздуху в помещении. Такие экраны могут снижать эффективность радиатора до 20%.

Декоративная решетка отлично вписывается в интерьер, но снижает эффективность прогрева помещения

5. Пятый фактор — наличие воздушных пробок. В большинстве способов подключения радиатора к трубопроводам в отопительном приборе может скапливаться воздух. Со временем он снизит объем теплоносителя в радиаторе, или вообще не даст ему циркулировать по системе. Значит, воздух необходимо регулярно удалять — с помощью клапана Маевского.

Клапан Маевского есть в большинстве радиаторов. находится он сбоку, на одной из торцевых сторон радиатора сверху.

6. Шестой фактор — неправильный монтаж радиатора. При их монтаже необходимо выполнять следующие общие правила: минимальное расстояние от пола до низа радиаторов — 10 сантиметров, минимальное расстояние от верха радиатора до низа выступающей части подоконника — 10 сантиметров (лучше, конечно, чтобы над радиатором не было ничего), отступ от стены до радиатора в 3 сантиметра, и — отсутствие плотных штор. Лучше всего — изучить документацию производителя на конкретный радиатор. В ней должны предлагаться варианты для разных способов монтажа.

Один из производителей предлагает такие требования к размерам ниш при установке секционных радиаторов в нишах под подоконниками.

Ну а неправильный монтаж радиатора может снизить эффективность прогрева помещения.

Подписывайтесь на канал, ставьте лайки — это мотивирует нас писать новые статьи.

Источник: zen.yandex.ru

Пример расчета мощности батарей отопления

 V=15x3=45 метров кубических

Далее считаем мощность, которая потребуется для обогрева помещения заданного объема. В нашем случае — 45 кубических метров. Для этого необходимо умножить объем помещения на мощность, необходимую для обогрева одного кубического метра воздуха в заданном регионе. Для Азии, Кавказа это 45 вт, для средней полосы 50 вт, для севера около 60 вт. В качестве примера возьмем мощность 45 вт и тогда получим:

45×45=2025 вт — мощность, необходимая для обогрева помещения с кубатурой 45 метров

Стальные радиаторы

Оставим за скобками сравнение радиаторов отопления и отметим только нюансы, о которых необходимо иметь представление при выборе радиатора для вашей системы отопления.

В случае расчета мощности стальных радиаторов отопления все просто. Есть необходимая мощность для уже известного помещения — 2025 вт.

Смотрим по таблице и ищем стальные батареи, выдающие необходимое число Вт. Такие таблицы несложно найти на сайтах производителей и продавцов подобных товаров. Обратите внимание на температурные режимы, при которых будет эксплуатироваться система отопления. Оптимально использовать батарею в режиме 70/50 С.

В таблице указывается тип радиатора. Возьмем тип 22, как один из самых популярных и вполне достойных по своим потребительским качествам. Отлично подходит радиатор размером 600×1400. Мощность радиатора отопления составит 2015 Вт. Лучше брать немного с запасом.

2025/150 = 14 (округлили до целых)

Получили необходимое число секций для помещения объемом 45 кубических метров.

Расчет радиаторов отопления частного дома начинается с выбора самих устройств. В ассортименте для потребителей представлены чугунные, стальные, алюминиевые и биметаллические модели, отличающиеся по своей тепловой мощности (теплоотдаче). Какие-то из них греют лучше, а какие-то хуже – тут следует ориентироваться на количество секций и на размеры батарей. Давайте посмотрим, какой тепловой мощностью обладают те или иные конструкции.

Секционные биметаллические радиаторы изготавливаются из двух компонентов – это сталь и алюминий. Их внутренняя основа состоит из прочной стали, выдерживающей высокое давление, стойкой к гидроударам и агрессивному теплоносителю. Поверх стального сердечника методом литья под давлением наносится алюминиевая «рубашка».

Подробный расчет мощности радиаторов отопления

Теплоотдача биметаллических радиаторов зависит от межосевого расстояния и от конкретно выбранной модели. Например, устройства от компании Rifar могут похвастаться тепловой мощностью до 204 Вт при межосевом расстоянии 500 мм. Аналогичные модели, но с межосевым расстоянием 350 мм, отличаются тепловой мощностью 136 Вт. Для небольших радиаторов с межосевым расстоянием 200 мм теплоотдача составляет 104 Вт.

Теплоотдача биметаллических радиаторов от других производителей может отличаться в меньшую сторону (в среднем 180-190 Вт при расстояние между осями 500 мм). Например, максимальная тепловая мощность батарей от Global составляет 185 Вт на секцию при расстояние между осями 500 мм.

Не переборщите!

14-15 секций для одного радиатора — это максимум. Ставить радиаторы по 20 и больше секций неэффективно. В таком случае следует разбивать число секций напополам и устанавливать 2 радиатора по 10 секций. Например, 1 радиатор поставить возле окна, а другой возле входа в комнату или на противоположной стене.

Со стальными радиаторами так же. Если комната достаточно велика и радиатор выходит слишком большой — лучше поставьте два поменьше, но той же суммарной мощности.

Если в комнате того же объема 2 окна или более, то хорошим решением будет установка радиатора под каждым из окон. В случае с секционными радиаторами все довольно просто.

14/2=7 секций под каждым окном для комнаты того же объема

Радиаторы обычно продаются по 10 секций,  лучше взять четное число, например 8. Запас в 1 секцию лишним не будет в случае серьезных морозов. Мощность от этого особенно не изменится, однако инерция нагрева радиаторов уменьшится. Это может быть полезно, если в комнату часто проникает холодный воздух. Например, если это офисное помещение, в которое часто заходят клиенты. В таких случаях радиаторы будут нагревать воздух немного быстрее.

Расчет по площади

Расчет радиаторов отопления

Как осуществляется расчет батареи отопления на квадратный метр обогреваемой площади? Для начала нужно ознакомиться с базовыми параметрами, учитываемыми в вычислениях, которые включают в себя:

  • тепловую мощность для обогрева 1 кв. м – 100 Вт;
  • стандартную высоту потолков – 2,7 м;
  • одну внешнюю стену.

Исходя из таких данных, тепловая мощность, необходимая для обогрева помещения площадью 10 кв. м, составляет 1000 Вт. Полученная мощность делится на теплоотдачу одной секции – в результате получаем необходимое количество секций (или подбираем подходящий стальной панельный или трубчатый радиатор).

Для самых южных и холодных северных регионов применяются дополнительные коэффициенты, как повышающие, так и понижающие, – речь о них пойдет дальше.

Что делать после расчета?

После расчета мощности радиаторов отопления всех комнат, необходимо будет выбрать трубопровод по диаметру, краны. Количество радиаторов, длину труб, количество кранов для радиаторов. Подсчитать объем всей системы и выбрать подходящий для нее котел.

Для человека дом часто ассоциируется с теплом и уютом.

Чтобы дом был теплым, необходимо уделить должное внимание системе отопления. Современные производители используют новейшие технологии для производства элементов систем отопления. Однако, без грамотного планирования подобной системы, для определенных помещений эти технологии могут оказаться бесполезны.

Подробный расчет мощности радиаторов отопления

с точным расчетом мощности радиаторов отопления и теплопотерь. Радиаторы отопления лучше устанавливать в той части комнаты, где холоднее всего. В вышеизложенном примере была рассмотрена установка батарей отопления возле окон. Это один из наиболее выгодных и эффективных вариантов размещения элементов отопительной системы.

Простой расчет

Расчет количества секций батарей отопления с помощью калькулятора дает неплохие результаты. Приведем простейший пример для обогрева помещения площадью 10 кв. м – если помещение не угловое и в нем установлены двойные стеклопакеты, требуемая тепловая мощность составит 1000 Вт. Если мы хотим установить алюминиевые батареи с теплоотдачей 180 Вт, нам понадобятся 6 секций – просто делим полученную мощность на теплоотдачу одной секции.

Соответственно, если вы купите радиаторы с теплоотдачей одной секции 200 Вт, то количество секций составит 5 шт. В помещении будут высокие потолки до 3,5 м? Тогда количество секций возрастет до 6 шт. В комнате две внешние стены (угловая комната)? В этом случае нужно добавить еще одну секцию.

Также нужно учитывать запас по тепловой мощности на случай слишком холодной зимы – он составляет 10-20% от расчетной.

Узнать информацию о теплоотдаче батарей можно из их паспортных данных. Например, расчет количества секций алюминиевых радиаторов отопления ведется из расчета теплоотдачи одной секции. То же самое относится к биметаллическим радиаторам (и чугунным, хоть они и неразборные). При использовании стальных радиаторов берется паспортная мощность всего прибора (мы приводили примеры выше).

Очень точный расчет

Выше мы привели в пример очень простой расчет количества батарей отопления на площадь. Он не учитывает многие факторы, такие как качество теплоизоляции стен, вид остекления, минимальная наружная температура и многие другие. Пользуясь упрощенными вычислениями, мы можем наделать ошибок, в результате чего некоторые комнаты получатся холодными, а некоторые – слишком жаркими. Температура поддается коррекции с помощью запорных кранов, но лучше всего предусмотреть все заранее – хотя бы ради экономии материалов.

Биметаллический радиатор

Как производится точный расчет количества радиаторов отопления в частном доме? Будем учитывать понижающие и повышающие коэффициенты. Для начала затронем остекление. Если в доме установлены одинарные окна, используем коэффициент 1,27. Для двойных стеклопакетов коэффициент не применяется (на самом деле он составляет 1,0). Если в доме стоят тройные стеклопакеты, применяем понижающий коэффициент 0,85.

Стены в доме выложены в два кирпича или в их конструкции предусмотрен утеплитель? Тогда применяем коэффициент 1,0. Если обеспечить дополнительную теплоизоляцию, можно смело использовать понижающий коэффициент 0,85 – расходы на обогрев уменьшатся. Если теплоизоляции нет, применяем повышающий коэффициент 1,27.

Обратите внимание, что обогрев домовладения с одинарными окнами и плохой теплоизоляцией приводит к большим тепловым (и денежным) потерям.

Выполняя расчет количества батарей отопления на площадь, необходимо учитывать соотношение площади полов и окон. В идеале это соотношение составляет 30% – в этом случае применяем коэффициент 1,0. Если вы любите большие окна, а соотношение составит 40%, следует применить коэффициент 1,1, а при соотношении 50% нужно умножить мощность на коэффициент 1,2. Если соотношение составит 10% или 20%, применяем понижающие коэффициенты 0,8 или 0,9.

  • до 2,7 м – 1,0;
  • от 2,7 до 3,5 м – 1,1;
  • от 3,5 до 4,5 м – 1,2.

За потолком находится чердак или еще одна жилая комната? И здесь мы применяем дополнительные коэффициенты. Если наверху отапливаемый чердак (или с утеплением), умножаем мощность на 0,9, а если жилое помещение – на 0,8. За потолком обычный неотапливаемый чердак? Применяем коэффициент 1,0 (или просто не берем его в расчет).

После потолков примемся за стены – вот коэффициенты:

  • одна наружная стена – 1,1;
  • две наружные стены (угловая комната) – 1,2;
  • три наружные стены (последняя комната в вытянутом доме, хате) – 1,3;
  • четыре наружные стены (однокомнатный домик, хозпостройка) – 1,4.

Также в расчет берется средняя температура воздуха в самый холодный зимний период (тот самый региональный коэффициент):

  • холода до –35 °C – 1,5 (очень большой запас, позволяющий не замерзнуть);
  • морозы до –25 °C – 1,3 (подходит для Сибири);
  • температура до –20 °C – 1,1 (средняя полоса России);
  • температура до –15 °C – 0,9;
  • температура до –10 °C – 0,7.

Последние два коэффициента используются в жарких южных регионах. Но даже тут принято оставлять солидный запас на случай холодов или специально для теплолюбивых людей.

Получив итоговую тепловую мощность, необходимую для обогрева выбранного помещения, следует разделить ее на теплоотдачу одной секции. В результате мы получим требуемое количество секций и сможем отправиться в магазин. Обратите внимание, что данные расчеты предусматривают базовую мощность обогрева в размере 100 Вт на 1 кв. м.

Если вы боитесь ошибиться в расчетах, обратитесь за помощью к профильным специалистам. Они выполнят максимально точные расчеты и вычислят требуемую для обогрева тепловую мощность.

Источник: ventcondition.ru


Leave a Comment

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.