Обогреватель рефлектор


Приветствую, Самоделкины!

Чтобы не мерзнуть в мастерской или гараже давайте попробуем собрать обогреватель своими руками.

И обогреватель не простой, а такой, чтобы прям почти бесплатно, с минимумом вложений. На сегодняшний день самый доступный и эффективный источник тепла — это обычная лампа накаливания.

Всю потребляемую энергию лампочка переводит в свет и тепло. Вот так выглядит спектр излучения лампы накаливания.

На рисунке показана часть спектра, которую может видеть человеческий глаз.

Как видите основная мощность излучения лежит в другом спектре — в инфракрасном.

Если рассматривать лампочку как источник света, то ее КПД чрезвычайно мал и составляет не более 2-3%. А вот если посмотреть на лампочку как на источник тепла, то КПД будет аж 97%, потому как инфракрасное излучение нами воспринимается как тепло.

Если увеличить напряжение, подаваемое на лампочку, то можно получить КПД светоотдачи до 15%, но при этом лампочка проживет не более пары часов. А если снизить напряжение вдвое, то светоотдача упадет в 5 раз, и почти вся потребляемая энергия уйдет на излучение инфракрасного спектра. При этом срок службы лампочки увеличится с 1000 часов до почти 1000000 часов, то есть лампочка станет практически вечной, если сравнивать с человеческой жизнью.


Но если точнее, то она сможет проработать непрерывно более 100 лет. Если соединить две лампочки последовательно, то напряжение на каждой из ламп упадет вдвое.

Вы можете видеть, как при таком подключении значительно упала светоотдача. Давайте измерим сколько потребляет такая связка лампочек. Ток примерно 290 мА.

Напряжение в розетке у автора стабильно и равняется 240 вольт. Это потому, что рядом находится подстанция.

Значит потребление двух лампочек, примерно 70 Вт. Из-за увеличения сопротивления снизилось потребление, но соотношение количества тепла на 1 Вт потребляемой мощности, увеличилось.

Для сравнения измерим ток, протекающий в одной лампочке. Он равен 420 мА. То есть, потребление составляет честных 100 Вт.

Для самодельного обогревателя автор прикупил 150-ваттные лампочки, которые, кстати, после эпического закона о запрете на производство лампочек мощностью свыше 100 Вт, теперь производятся под видом теплоизлучателей. Хитро, не правда ли?

При подключении последовательно таких ламп, сразу чувствуется излучаемое тепло. И при этом на них можно спокойно смотреть, не щурясь от яркого света. Ток в этой цепи равен 410 мА. Значит потребление такой связки лампочек около 100 Вт, которые практически полностью идут на обогрев.


Давайте посмотрим какой мощности бывают инфракрасные обогреватели и на какую площадь они рассчитаны. В интернете очень легко можно сравнить разные модели.

Как видим, большинство обогревателей тратят на обогрев одного квадратного метра 100 Вт электроэнергии. Чисто для сравнения глянем, что творится у масляных радиаторов. Соотношение такое же, те же 100 Вт на 1 м площади.

Автору нужно обогревать небольшую рабочую зону площади около 3-4 м². Поэтому он решил собрать инфракрасный обогреватель мощностью 300 Вт. Для этого потребуется 3 пары лампочек.

Чтобы обогреватель был более-менее прочным сделаем раму из алюминиевого уголка. У автора есть пару ненужных обрезков.

Лампочки внутри рамы нужно расположить так, чтобы расстояние между осями лампочек равнялось расстоянию от оси крайней лампочки до края рамы. Как-то хитро звучит, но на рисунке, думаю, все понятно.

Расстояние между рядами лампочек должно быть такое, чтобы можно было через 100 лет заменить лампочки в случае выхода их из строя. То есть необходимо оставить зазор между колбами около сантиметра. Части рамы автор временно соединяет болтами. Конечно же нужно при этом использовать угольник, иначе получится чёрти что. Теперь внутри рамы нужно закрепить две полосы, на которые будет крепиться рефлектор, то есть отражатель.

После того как автор заклепками закрепил полосы алюминия, рама стала жесткой. Углы выдержаны и можно заменить болты в раме на заклепки. Кроме болтов одного уголка оставляем возможность его открутить, на тот случай если не получится вкрутить лампочки.


А теперь самое интересное. Делаем отражатель. Обычный отражатель в виде параболы не сильно эффективен. Гораздо эффективнее отражатель в виде бипараболы. Обычный отражатель отражает часть света обратно в лампу, а бипарабола такого не делает.

Для изготовления отражателя потребуется алюминий из алюминиевых банок, потому что он легко обрабатывается имеет нужный изгиб.

Долго примеряясь, автор пришел к выводу, что лучше сделать изгиб примерно посередине, так чтобы остался запас сантиметр. И еще один изгиб, с помощью которого два сегмента будут цепляться друг за друга.

Соединить два куска вместе помогут заклепки. Но баночный алюминии очень тонкий и легко рвется, поэтому с двух сторон на заклепку наденем шайбу. Такая конструкция будет уже гораздо надежней.

Теперь нужно скрепить недостающие куски таким же макаром. Кладем рефлектор в раму.

Крепим отражатель клепками. Сначала центральные, не дожимая их до конца, а потом крайние. Это делается потому, что листы ёрзают и постоянно хотят немного сложиться. А если зажать центральные заклепки, то листы могут остаться не в том положении, в котором нужно.

Отражатель закреплен. Теперь нужно закрепить лампы, да так, чтобы они не касались рефлектора, а отстояли от него на некотором расстоянии, примерно на палец. Да, пусть будет палец.


Потребуются полоски алюминия длиной 9 см. Места крепления патрона к полоскам нужно очень точно размечать. Потому что если будет криво, то не получится завести провод. Полоса прям впритык по ширине.

Крепим полоски к раме, используя угольник. Патроны закрепим с помощью гаек с нейлоновым кольцом. Они не раскручиваются от вибрации и их не нужно контрить. Сильно зажимать гайку нельзя, так как потом будет расширяться от нагрева и может треснуть.

Теперь самый важный момент — вкручиваем лампочки. Впритык, но закрутить можно.

Теперь проводка. Автор разводил проводами какие нашел. Обязательно надевал наконечники, а Вот теперь изоляция. Провод должен иметь минимум 2 изоляции. Особенно если он касается металла.

Поставим двухклавишный выключатель, чтобы разделить нагреватели на две линии. Для этого крепим кусок фанеры, на который потом поставим выключатель. Для питания обогревателя будем использовать трехжильный кабель.

Теперь можно включать. При нажатии на первую клавишу загораются средние лампы. Рассеиваемая мощность составляет 100 Вт. При нажатии на вторую клавишу включаются остальные четыре лампы, и рассеиваемая мощность уже составляет 200 Вт.

А теперь две клавиши вместе.

Эта штука реально греет. Прям сразу при включении ощущается тепло как от солнца. Как будто сидишь перед камином. При этом свет от лампочек не идет яркий и не бьет по глазам. Даже через майку тепло сразу пробивается. Огромный плюс такого обогревателя в том, что он греет сразу не только тот участок, на которой он направлен. Если повесить в четырех углах гаража такие обогреватели ватт по 500, то можно не бояться замерзнуть зимой. Да, выйдет дороговато, рублей 10 за час, но включать их можно только когда необходимо, и не отапливать помещение заранее. И не придется ждать пока оно прогреется.


Для подвешивания светильника автор использовал перфоленту. С ее помощью можно легко регулировать угол наклона светильника.

С двух метров тепло от обогревателя чувствуется отчетливо, значит все работает.

Благодарю за внимание. До новых встреч!

Видео:

Источник: USamodelkina.ru

Как работает инфракрасный обогреватель

В отличие от других типов обогревателей, ИК не греет воздух в помещении. Он работает по принципу нашего светила: разогревает предметы, которые попадаются на пути движения инфракрасного излучения. А разогретые поверхности делятся теплом с окружающим воздухом.

Обогреватель рефлектор
Схема обогрева дома разными способами

Инфракрасный обогреватель состоит из двух основных элементов:

  • нагревательного элемента-излучателя;
  • отражателя (рефлектора).

Оба эти элемента собираются в термостойком корпусе.

Для изготовления рефлектора используется алюминий или полированная сталь. Задача отражателя – сформировать поток излучения и направить его в нужную зону.

В качестве нагревательного элемента (излучателя) используются лампы:

  • галогенные;
  • карбоновые и кварцевые.

Обогреватели с галогенными лампами стоят дешевле, чем с карбоновыми или кварцевыми. Но у них есть один недостаток, который не способствует использованию прибора в жилых помещениях: их работа сопровождается свечением лампы. Согласитесь, что такой обогреватель в спальне не поставишь, да и в детской тоже. Хотя, на балконах и лоджиях, если они не объединены с основным помещением, можно.

В отличие от галогенных, карбоновые и кварцевые лампы света не дают (но их цена выше). Собственно, это их единственное отличие от галогенных ламп. Некоторые продавцы утверждают, что карбон и кварц кроме обогрева помещения еще и оздоравливает жильцов. Не стоит воспринимать такие заявления всерьез: медики однозначно заявляют, что инфракрасный обогреватель никакого влияния на здоровье человека не оказывают.

Кроме излучателя и рефлектора, в конструкции нагревателя присутствуют датчик пожароопасности и термостаты. Первые автоматически отключают обогреватель при его перегреве или опрокидывании, вторые – служат для поддержания заданной температуры.


Обогреватель рефлекторА вы знаете, что инфракрасное излучение также широко используется в системе «Теплый пол»? Про инфракрасный теплый пол на балконе и о том, как самостоятельно провести его монтаж, читайте на нашем сайте.

О преимуществах использования на окнах энергосберегающих пленок вы узнаете из этой статьи. Как их клеить правильно для достижения максимального эффекта.

Перед установкой обогревательных приборов на балкон, его обязательно нужно утеплить, иначе пользы не будет. Подробная информация про утепление балконов и лоджий есть на этой странице http://balkonsami.ru/uteplenie/stenyi/kak-pravilno-uteplit-balkon.html

Изготовление инфракрасного обогревателя своими руками

ИК обогреватель из старого рефлектора

Вам понадобится:

  • рефлектор советского производства;
  • нихромовая нить;
  • стальной стержень;
  • диэлектрик огнеупорный.

Совет: В качестве диэлектрика вы можете использовать тарелку любого диаметра, изготовленную из глазурованной керамики.

Ваши действия:

  • тщательно очистите отражатель рефлектора от грязи и пыли;
  • проверьте целостность сетевого шнура, вилки, соединения с клеммами для подключения спирали;

  • измерьте длину спирали, навиваемой на керамический конус прибора;
  • возьмите стальной стержень такой же длины и навейте на него нихромовую нить. Шаг навивки – 2 мм;
  • по окончании навивки снимите спираль со стержня;
  • уложите спираль в свободном состоянии ( ее витки не должны соприкасаться) на огнеупорный диэлектрик;
  • к концам спирали подключите ток из сетевой розетки;
  • разогретую спираль отключите и уложите в канавку керамического конуса обогревателя;
  • подключите ее к клеммам питания.

Из стекла и фольги

Необходимые материалы:

  • стекло: два куска одного размера;
  • фольга алюминиевая;
  • герметик;
  • свеча парафиновая;
  • сетевой провод с вилкой;
  • клей эпоксидный;
  • ватные палочки;
  • чистая х/б салфетка;
  • держатель для свечи.
Обогреватель рефлектор
Материалы для изготовления обогревателя

Что делаем:

  • удаляем с поверхности стекла пыль, грязь, жир, следы краски, если таковые имеются и т. д.;
  • зажигаем свечку и плавно перемещаем над ее пламенем стеклянные пластины (поочередно и только с одной стороны). В результате этой операции на стекле должен образоваться равномерный слой копоти. Он в нагревателе будет служить проводником;

Совет: Если перед обработкой стекло охладить, слой копоти ляжет на его поверхность ровнее.

  • при помощи ватных палочек формируем по периметру стекла прозрачную «рамочку» шириной примерно в пять миллиметров;
  • из листа алюминиевой фольги вырезаем два прямоугольника. Их ширина должна равняться ширине токопроводящего слоя (той самой копоти, которую вы усердно осаживали на стекло в начале работы). Полоски фольги в нашем ИК будут выступать в роли электродов;
  • стеклянную пластину размещаем закопченной стороной вверх и наносим на ее поверхность эпоксидный клей;
  • на края пластины накладываем фольгу таким образом, чтобы их концы выходили за пределы стекла;
  • полученную конструкцию осторожно накрываем второй стеклянной пластиной (закопченной стороной внутрь) и склеиваем «пирог», тщательно прижимая его слои друг другу;
  • периметр конструкции герметизируем;
  • замеряем сопротивление проводящего слоя;
  • используя полученный результат, рассчитываем мощность нагревателя по формуле:

N = R x I2 , где

N – мощность (Вт);

R – сопротивление (Ом);

I — сила тока (А).

Обогреватель рефлектор
Готовый инфракрасный обогреватель из фольги и стекол

Если все сложилось удачно и мощность не превысила допустимую нормативами величину, можете подключать самодельный инфракрасный нагреватель к розетке. Если не угадали – разбирайте прибор и начинайте все заново.


На заметку: Для ориентировки имейте в виду, что сопротивление тем меньше, чем шире полоса сажи. Следовательно, температура нагрева стекла будет выше.

ИК на базе слоистого пластика

Вам потребуется:

  • бумажный слоистый пластик площадью 1 кв. м – 2 заготовки;
  • клей эпоксидный;
  • графит;
  • медная шина для изготовления клемм;
  • дерево для изготовления рамки;
  • сетевой шнур с вилкой.

Графит можно «добыть» из батареек, отслуживших свой срок.

Что надо сделать:

Обогреватель рефлектор
Графит для обогревателя
  • смешиваем эпоксидный клей с графитом до получения густой массы ( таким образом готовится будущий проводник с большим сопротивлением);
  • укладываем на рабочий стол пластиковую заготовку шероховатой стороной вверх;
  • наносим на поверхность пластика эпоксидно-графитовую смесь зигзагообразными мазками;
  • аналогично готовим вторую пластину;
  • накладываем пластины друг на друга обработанными сторонами друг к другу, и склеиваем их;
  • с противоположных сторон графитового проводника прикрепляем медные клеммы;
  • по периметру конструкции сооружаем фиксирующую деревянную рамку;
  • оставляем в покое изделия до полного высыхания графитово-эпоксидного слоя;
  • измеряем сопротивление проводника и рассчитываем мощность (см. вариант 2).

Величина сопротивления проводника зависит от количества графита в массе. Если в результате тестирования выяснилось, что сопротивление проводника слишком низкое – приготовьте новый эпоксидно-графитовый состав, увеличив дозу графита. Соответственно высокое сопротивление можно снизить, уменьшив количество графитового порошка в проводнике.

После того, как вы добьетесь положительного результата, можете подсоединить сетевой шнур к клеммам и включить прибор в розетку. Можно усовершенствовать конструкцию, установив простенький терморегулятор.

Мы рассмотрели лишь малую толику способов изготовления инфракрасных обогревателей. На самом деле существует великое множество вариантов, ведь домашние мастера стремятся использовать разные вещи, отслужившие свое. Их разнообразие и определяет количество изобретений самодельных инфракрасных обогревателей.

Далее предлагаем вам посмотреть видео, в котором представлен еще один из интересных и простых в реализации вариантов создания инфракрасного обогревателя.

Источник: balkonsami.ru

Приветствую, Самоделкины!

Чтобы не мерзнуть в мастерской или гараже давайте попробуем собрать обогреватель своими руками.

И обогреватель не простой, а такой, чтобы прям почти бесплатно, с минимумом вложений. На сегодняшний день самый доступный и эффективный источник тепла — это обычная лампа накаливания.

Всю потребляемую энергию лампочка переводит в свет и тепло. Вот так выглядит спектр излучения лампы накаливания.

На рисунке показана часть спектра, которую может видеть человеческий глаз.

Как видите основная мощность излучения лежит в другом спектре — в инфракрасном.

Если рассматривать лампочку как источник света, то ее КПД чрезвычайно мал и составляет не более 2-3%. А вот если посмотреть на лампочку как на источник тепла, то КПД будет аж 97%, потому как инфракрасное излучение нами воспринимается как тепло.

Если увеличить напряжение, подаваемое на лампочку, то можно получить КПД светоотдачи до 15%, но при этом лампочка проживет не более пары часов. А если снизить напряжение вдвое, то светоотдача упадет в 5 раз, и почти вся потребляемая энергия уйдет на излучение инфракрасного спектра. При этом срок службы лампочки увеличится с 1000 часов до почти 1000000 часов, то есть лампочка станет практически вечной, если сравнивать с человеческой жизнью.

Но если точнее, то она сможет проработать непрерывно более 100 лет. Если соединить две лампочки последовательно, то напряжение на каждой из ламп упадет вдвое.

Вы можете видеть, как при таком подключении значительно упала светоотдача. Давайте измерим сколько потребляет такая связка лампочек. Ток примерно 290 мА.

Напряжение в розетке у автора стабильно и равняется 240 вольт. Это потому, что рядом находится подстанция.

Значит потребление двух лампочек, примерно 70 Вт. Из-за увеличения сопротивления снизилось потребление, но соотношение количества тепла на 1 Вт потребляемой мощности, увеличилось.

Для сравнения измерим ток, протекающий в одной лампочке. Он равен 420 мА. То есть, потребление составляет честных 100 Вт.

Для самодельного обогревателя автор прикупил 150-ваттные лампочки, которые, кстати, после эпического закона о запрете на производство лампочек мощностью свыше 100 Вт, теперь производятся под видом теплоизлучателей. Хитро, не правда ли?

При подключении последовательно таких ламп, сразу чувствуется излучаемое тепло. И при этом на них можно спокойно смотреть, не щурясь от яркого света. Ток в этой цепи равен 410 мА. Значит потребление такой связки лампочек около 100 Вт, которые практически полностью идут на обогрев.

Давайте посмотрим какой мощности бывают инфракрасные обогреватели и на какую площадь они рассчитаны. В интернете очень легко можно сравнить разные модели.

Как видим, большинство обогревателей тратят на обогрев одного квадратного метра 100 Вт электроэнергии. Чисто для сравнения глянем, что творится у масляных радиаторов. Соотношение такое же, те же 100 Вт на 1 м площади.

Автору нужно обогревать небольшую рабочую зону площади около 3-4 м². Поэтому он решил собрать инфракрасный обогреватель мощностью 300 Вт. Для этого потребуется 3 пары лампочек.

Чтобы обогреватель был более-менее прочным сделаем раму из алюминиевого уголка. У автора есть пару ненужных обрезков.

Лампочки внутри рамы нужно расположить так, чтобы расстояние между осями лампочек равнялось расстоянию от оси крайней лампочки до края рамы. Как-то хитро звучит, но на рисунке, думаю, все понятно.

Расстояние между рядами лампочек должно быть такое, чтобы можно было через 100 лет заменить лампочки в случае выхода их из строя. То есть необходимо оставить зазор между колбами около сантиметра. Части рамы автор временно соединяет болтами. Конечно же нужно при этом использовать угольник, иначе получится чёрти что. Теперь внутри рамы нужно закрепить две полосы, на которые будет крепиться рефлектор, то есть отражатель.

После того как автор заклепками закрепил полосы алюминия, рама стала жесткой. Углы выдержаны и можно заменить болты в раме на заклепки. Кроме болтов одного уголка оставляем возможность его открутить, на тот случай если не получится вкрутить лампочки.

А теперь самое интересное. Делаем отражатель. Обычный отражатель в виде параболы не сильно эффективен. Гораздо эффективнее отражатель в виде бипараболы. Обычный отражатель отражает часть света обратно в лампу, а бипарабола такого не делает.

Для изготовления отражателя потребуется алюминий из алюминиевых банок, потому что он легко обрабатывается имеет нужный изгиб.

Долго примеряясь, автор пришел к выводу, что лучше сделать изгиб примерно посередине, так чтобы остался запас сантиметр. И еще один изгиб, с помощью которого два сегмента будут цепляться друг за друга.

Соединить два куска вместе помогут заклепки. Но баночный алюминии очень тонкий и легко рвется, поэтому с двух сторон на заклепку наденем шайбу. Такая конструкция будет уже гораздо надежней.

Теперь нужно скрепить недостающие куски таким же макаром. Кладем рефлектор в раму.

Крепим отражатель клепками. Сначала центральные, не дожимая их до конца, а потом крайние. Это делается потому, что листы ёрзают и постоянно хотят немного сложиться. А если зажать центральные заклепки, то листы могут остаться не в том положении, в котором нужно.

Отражатель закреплен. Теперь нужно закрепить лампы, да так, чтобы они не касались рефлектора, а отстояли от него на некотором расстоянии, примерно на палец. Да, пусть будет палец.

Потребуются полоски алюминия длиной 9 см. Места крепления патрона к полоскам нужно очень точно размечать. Потому что если будет криво, то не получится завести провод. Полоса прям впритык по ширине.

Крепим полоски к раме, используя угольник. Патроны закрепим с помощью гаек с нейлоновым кольцом. Они не раскручиваются от вибрации и их не нужно контрить. Сильно зажимать гайку нельзя, так как потом будет расширяться от нагрева и может треснуть.

Теперь самый важный момент — вкручиваем лампочки. Впритык, но закрутить можно.

Теперь проводка. Автор разводил проводами какие нашел. Обязательно надевал наконечники, а Вот теперь изоляция. Провод должен иметь минимум 2 изоляции. Особенно если он касается металла.

Поставим двухклавишный выключатель, чтобы разделить нагреватели на две линии. Для этого крепим кусок фанеры, на который потом поставим выключатель. Для питания обогревателя будем использовать трехжильный кабель.

Теперь можно включать. При нажатии на первую клавишу загораются средние лампы. Рассеиваемая мощность составляет 100 Вт. При нажатии на вторую клавишу включаются остальные четыре лампы, и рассеиваемая мощность уже составляет 200 Вт.

А теперь две клавиши вместе.

Эта штука реально греет. Прям сразу при включении ощущается тепло как от солнца. Как будто сидишь перед камином. При этом свет от лампочек не идет яркий и не бьет по глазам. Даже через майку тепло сразу пробивается. Огромный плюс такого обогревателя в том, что он греет сразу не только тот участок, на которой он направлен. Если повесить в четырех углах гаража такие обогреватели ватт по 500, то можно не бояться замерзнуть зимой. Да, выйдет дороговато, рублей 10 за час, но включать их можно только когда необходимо, и не отапливать помещение заранее. И не придется ждать пока оно прогреется.

Для подвешивания светильника автор использовал перфоленту. С ее помощью можно легко регулировать угол наклона светильника.

С двух метров тепло от обогревателя чувствуется отчетливо, значит все работает.

Благодарю за внимание. До новых встреч!

Видео:

Источник: USamodelkina.ru

Виды и характеристики инфракрасных обогревателей

31e88fdb4a34d2a488765ab4e5692b11.jpg

Потолочный инфракрасный обогреватель.

Существуют три вида инфракрасных обогревателей, имеющие отличия в зависимости от типа источника энергии. Первым из таких инфракрасных приборов являются газовые агрегаты, основанные на принципе поджигания и взаимодействия воздуха с пропаном, с помощью специального пьезо-компонента. Инфракрасные обогреватели на газовой основе предназначены для обогрева больших помещений, таких как спортивные площадки, выставочные залы и другие масштабные помещения. Принцип работы газовых инфракрасных обогревателей основан на длинных волнах, способных обогревать до 25 м³.

Дизельный тип инфракрасного обогревателя имеет принцип работы разогрева электродов с помощью электропитания. Таким образом, разогретые горелки, содержащие эти электроды, включают насос с топливом и запускают вентилятор, работа которого позволяет формированию специальной тепловой смеси, которая затем поступает к горелке и загорается при контакте с воздухом. Этот процесс нагревания затем производит инфракрасные лучи.

Третий тип — это электрический ИО, принцип работы которого основан на разогреве цокольной нитевой катушки, достигающей около 900 °С и производящей инфракрасные лучи, которые с помощью рефлектора обогревают определенную зону. В цилиндрическом основании газового ИО располагается газовый баллон, соединяющийся с горелкой зажигания с помощью специального шланга внутри стойки обогревателя. Коэффициент потенциального действия составляет около 85%. Цена газового инфракрасного обогревателя — около 16000 рублей.

2b42a63ce058bb2c0036907c65d26793.jpg

Схема подключения инфракрасного обогревателя к терморегулятору.

Строение дизельного обогревателя инфракрасного излучения заключается в расположении бака с топливом или керосином за рамой на колесной основе. Бак соединен шлангом с излучателем, который внешне напоминает горизонтальный прожектор. Приблизительная цена на дизельный ИО составляет около 18000 рублей. В зависимости от типа материала, электрические обогреватели инфракрасного излучения могут быть с кварцевой, металлической или керамической оболочкой, в которой размещается нить нагревания. Оболочка располагается внутри кварц-стеклянной вакуумной трубки. Такие обогреватели очень привлекательны по цене, не более 3000 рублей, благодаря несложному строению.

Недостатки электрического обогревателя с кварцевой оболочкой заключаются в высоком потреблении электричества и небольшом сроке годности, около двух лет. Излучение светится красноватым цветом. В основном, такие обогреватели идеально подходят для непродолжительного обогрева больших помещений. Керамическая оболочка накаливания значительно эффективна в потреблении электроэнергии в отличие от кварцевого нагревателя. Такой тип обогревателей часто используется в саунах или лечебных целях. Отсутствует красное свечение и срок годности составляет около трех лет. Керамическая оболочка нагревается значительно медленней, чем кварцевая. Соответственно, его цена — от 9000 рублей. Наконец, электрические обогреватели с металлическим корпусом схожи с принципом работы керамического типа и стоят около 11000 рублей.

ИО классифицируются на высокотемпературные(более 400 °С) и низкотемпературные(до 50 °С). Длина волны инфракрасного излучения высокотемпературных обогревателей довольно коротка, около 7,5 мкм. Опасность действия на кожу человека такого типа обогрева высока. Короткие волны имеют жесткое воздействие, наподобие солнечного ожога. Инфракрасные обогреватели высокотемпературной работы используются для больших помещений с высотой потолка не менее 3 м. В небольших жилых помещениях применяют низкотемпературные агрегаты, в которых спираль не нагревается более чем на 65 °С.

Источник: handspc.ru

Как работает инфракрасный обогреватель

В отличие от других типов обогревателей, ИК не греет воздух в помещении. Он работает по принципу нашего светила: разогревает предметы, которые попадаются на пути движения инфракрасного излучения. А разогретые поверхности делятся теплом с окружающим воздухом.

Обогреватель рефлектор
Схема обогрева дома разными способами

Инфракрасный обогреватель состоит из двух основных элементов:

  • нагревательного элемента-излучателя;
  • отражателя (рефлектора).

Оба эти элемента собираются в термостойком корпусе.

Для изготовления рефлектора используется алюминий или полированная сталь. Задача отражателя – сформировать поток излучения и направить его в нужную зону.

В качестве нагревательного элемента (излучателя) используются лампы:

  • галогенные;
  • карбоновые и кварцевые.

Обогреватели с галогенными лампами стоят дешевле, чем с карбоновыми или кварцевыми. Но у них есть один недостаток, который не способствует использованию прибора в жилых помещениях: их работа сопровождается свечением лампы. Согласитесь, что такой обогреватель в спальне не поставишь, да и в детской тоже. Хотя, на балконах и лоджиях, если они не объединены с основным помещением, можно.

В отличие от галогенных, карбоновые и кварцевые лампы света не дают (но их цена выше). Собственно, это их единственное отличие от галогенных ламп. Некоторые продавцы утверждают, что карбон и кварц кроме обогрева помещения еще и оздоравливает жильцов. Не стоит воспринимать такие заявления всерьез: медики однозначно заявляют, что инфракрасный обогреватель никакого влияния на здоровье человека не оказывают.

Кроме излучателя и рефлектора, в конструкции нагревателя присутствуют датчик пожароопасности и термостаты. Первые автоматически отключают обогреватель при его перегреве или опрокидывании, вторые – служат для поддержания заданной температуры.

Обогреватель рефлекторА вы знаете, что инфракрасное излучение также широко используется в системе «Теплый пол»? Про инфракрасный теплый пол на балконе и о том, как самостоятельно провести его монтаж, читайте на нашем сайте.

О преимуществах использования на окнах энергосберегающих пленок вы узнаете из этой статьи. Как их клеить правильно для достижения максимального эффекта.

Перед установкой обогревательных приборов на балкон, его обязательно нужно утеплить, иначе пользы не будет. Подробная информация про утепление балконов и лоджий есть на этой странице http://balkonsami.ru/uteplenie/stenyi/kak-pravilno-uteplit-balkon.html

Изготовление инфракрасного обогревателя своими руками

ИК обогреватель из старого рефлектора

Вам понадобится:

  • рефлектор советского производства;
  • нихромовая нить;
  • стальной стержень;
  • диэлектрик огнеупорный.

Совет: В качестве диэлектрика вы можете использовать тарелку любого диаметра, изготовленную из глазурованной керамики.

Ваши действия:

  • тщательно очистите отражатель рефлектора от грязи и пыли;
  • проверьте целостность сетевого шнура, вилки, соединения с клеммами для подключения спирали;
  • измерьте длину спирали, навиваемой на керамический конус прибора;
  • возьмите стальной стержень такой же длины и навейте на него нихромовую нить. Шаг навивки – 2 мм;
  • по окончании навивки снимите спираль со стержня;
  • уложите спираль в свободном состоянии ( ее витки не должны соприкасаться) на огнеупорный диэлектрик;
  • к концам спирали подключите ток из сетевой розетки;
  • разогретую спираль отключите и уложите в канавку керамического конуса обогревателя;
  • подключите ее к клеммам питания.

Из стекла и фольги

Необходимые материалы:

  • стекло: два куска одного размера;
  • фольга алюминиевая;
  • герметик;
  • свеча парафиновая;
  • сетевой провод с вилкой;
  • клей эпоксидный;
  • ватные палочки;
  • чистая х/б салфетка;
  • держатель для свечи.
Обогреватель рефлектор
Материалы для изготовления обогревателя

Что делаем:

  • удаляем с поверхности стекла пыль, грязь, жир, следы краски, если таковые имеются и т. д.;
  • зажигаем свечку и плавно перемещаем над ее пламенем стеклянные пластины (поочередно и только с одной стороны). В результате этой операции на стекле должен образоваться равномерный слой копоти. Он в нагревателе будет служить проводником;

Совет: Если перед обработкой стекло охладить, слой копоти ляжет на его поверхность ровнее.

  • при помощи ватных палочек формируем по периметру стекла прозрачную «рамочку» шириной примерно в пять миллиметров;
  • из листа алюминиевой фольги вырезаем два прямоугольника. Их ширина должна равняться ширине токопроводящего слоя (той самой копоти, которую вы усердно осаживали на стекло в начале работы). Полоски фольги в нашем ИК будут выступать в роли электродов;
  • стеклянную пластину размещаем закопченной стороной вверх и наносим на ее поверхность эпоксидный клей;
  • на края пластины накладываем фольгу таким образом, чтобы их концы выходили за пределы стекла;
  • полученную конструкцию осторожно накрываем второй стеклянной пластиной (закопченной стороной внутрь) и склеиваем «пирог», тщательно прижимая его слои друг другу;
  • периметр конструкции герметизируем;
  • замеряем сопротивление проводящего слоя;
  • используя полученный результат, рассчитываем мощность нагревателя по формуле:

N = R x I2 , где

N – мощность (Вт);

R – сопротивление (Ом);

I — сила тока (А).

Обогреватель рефлектор
Готовый инфракрасный обогреватель из фольги и стекол

Если все сложилось удачно и мощность не превысила допустимую нормативами величину, можете подключать самодельный инфракрасный нагреватель к розетке. Если не угадали – разбирайте прибор и начинайте все заново.

На заметку: Для ориентировки имейте в виду, что сопротивление тем меньше, чем шире полоса сажи. Следовательно, температура нагрева стекла будет выше.

ИК на базе слоистого пластика

Вам потребуется:

  • бумажный слоистый пластик площадью 1 кв. м – 2 заготовки;
  • клей эпоксидный;
  • графит;
  • медная шина для изготовления клемм;
  • дерево для изготовления рамки;
  • сетевой шнур с вилкой.

Графит можно «добыть» из батареек, отслуживших свой срок.

Что надо сделать:

Обогреватель рефлектор
Графит для обогревателя
  • смешиваем эпоксидный клей с графитом до получения густой массы ( таким образом готовится будущий проводник с большим сопротивлением);
  • укладываем на рабочий стол пластиковую заготовку шероховатой стороной вверх;
  • наносим на поверхность пластика эпоксидно-графитовую смесь зигзагообразными мазками;
  • аналогично готовим вторую пластину;
  • накладываем пластины друг на друга обработанными сторонами друг к другу, и склеиваем их;
  • с противоположных сторон графитового проводника прикрепляем медные клеммы;
  • по периметру конструкции сооружаем фиксирующую деревянную рамку;
  • оставляем в покое изделия до полного высыхания графитово-эпоксидного слоя;
  • измеряем сопротивление проводника и рассчитываем мощность (см. вариант 2).

Величина сопротивления проводника зависит от количества графита в массе. Если в результате тестирования выяснилось, что сопротивление проводника слишком низкое – приготовьте новый эпоксидно-графитовый состав, увеличив дозу графита. Соответственно высокое сопротивление можно снизить, уменьшив количество графитового порошка в проводнике.

После того, как вы добьетесь положительного результата, можете подсоединить сетевой шнур к клеммам и включить прибор в розетку. Можно усовершенствовать конструкцию, установив простенький терморегулятор.

Мы рассмотрели лишь малую толику способов изготовления инфракрасных обогревателей. На самом деле существует великое множество вариантов, ведь домашние мастера стремятся использовать разные вещи, отслужившие свое. Их разнообразие и определяет количество изобретений самодельных инфракрасных обогревателей.

Далее предлагаем вам посмотреть видео, в котором представлен еще один из интересных и простых в реализации вариантов создания инфракрасного обогревателя.

Источник: balkonsami.ru


Leave a Comment

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.