Пластинчатый теплообменник фото


Кожухотрубная конструкция теплообменника, где среды движутся навстречу друг другу по трубкам, помещенным одна в другую, постепенно уходит в прошлое. Эти громоздкие устройства больших габаритов хотя и функционировали довольно эффективно, но не могли похвастать большим расходом нагреваемой среды. Им на смену пришли новые агрегаты – скоростные пластинчатые теплообменники. Их устройству, принципу действия и применению как раз и посвящена данная статья.

Устройство и принцип работы пластинчатого теплообменника

Конструктивно агрегат в корне отличается от своего кожухотрубного предшественника. Площадь поверхности обмена тепловой энергией у последнего наращивалась за счет увеличения длины змеевика, отсюда и большие габариты аппарата. В новом теплообменнике это достигается путем увеличения количества пластин одинаковой площади.

cкоросной агрегат для обогрева помещений

Имея такую же мощность, он по размерам втрое меньше кожухотрубного, при этом способен обеспечить большой расход нагреваемой среды, например, воды для нужд ГВС. Отсюда и возникло второе название агрегата – скоростной. Ниже на схеме показано устройство пластинчатого теплообменника:


устройство пластинчатого агрегата

1, 11 – подающий и обратный патрубки для подключения греющей среды (теплоносителя); 2, 12 – входной и выходной патрубки нагреваемой среды; 3 — передняя неподвижная плита; 4, 14 – отверстия для протока теплоносителя; 5 – малая уплотнительная прокладка в виде кольца; 6 – рабочая теплообменная пластина; 7 – верхняя направляющая; 8 – задняя подвижная плита; 9 – задняя опора; 10 – шпилька; 13 – большая прокладка по контуру пластины; 15 – нижняя направляющая.

На схеме представлен пластинчатый теплообменник для отопления самой простой конструкции с патрубками, расположенными по разные стороны агрегата. Между двумя плитами, установленными на двух направляющих, зажато определенное число пластин с резиновым уплотнением между ними. На каждой пластине с целью увеличения поверхности обмена выполнено рельефное гофрирование, как изображено на фото:

пластины с резиновым уплотнением


Присоединительные патрубки также могут находиться и с одной стороны аппарата, на передней плите, что не оказывает влияния на принцип работы пластинчатого теплообменника. Он заключается в том, что пространство между каждыми последующими пластинами поочередно заполняется то теплоносителем, то нагреваемой средой. Очередность заполнения обеспечивается формой прокладок, в одной секции они открывают путь потоку теплоносителя, в другой – поглотителя тепла.

Во время работы в каждой секции, кроме первой и последней, происходит интенсивный обмен теплом через пластины сразу с двух сторон. Обе среды протекают через свои секции навстречу друг другу, нагревающая подается сверху и выходит через нижний патрубок, а нагреваемая – наоборот. Как это работает, отображает функциональная схема пластинчатого теплообменника:

пластинчатый теплообменник для отопления

Технические характеристики

Пластины и прокладки могут изготавливаться из различных материалов, их выбор зависит от назначения агрегата, ведь сфера применения подобных теплообменников весьма широка. Мы же рассматриваем системы отопления и ГВС, где они выступают в качестве теплосилового оборудования. Для этой сферы пластины делаются из нержавеющей стали, а прокладки – из резины NBR или EPDM. В первом случае теплообменник из нержавеющей стали может работать с водой, нагретой до максимальной температуры 110 ºС, во втором – до 170 ºС.


теплосиловое оборудование

Для справки. Данные теплообменники используются и для разных технологических процессов, когда сквозь них протекают кислоты, щелочи, масла и другие среды. Тогда пластины производятся из титана, никеля и различных сплавов, а прокладки – из фторкаучука, асбеста и других материалов.

фрагмет пластины теплообменника

Расчет и подбор теплообменника осуществляется с помощью специализированного программного обеспечения по таким параметрам:

  • требуемая температура нагрева жидкости;
  • исходная температура теплоносителя;
  • необходимый расход нагреваемой среды;
  • расход теплоносителя.

Примечание. В качестве греющей среды, протекающей сквозь пластинчатый теплообменник для ГВС, может выступать вода температурой 95 или 115 ºС, либо пар, нагретый до 180 ºС. Это зависит от типа котельного оборудования. Количество и размер пластин подбирается таким образом, чтобы на выходе получить воду с максимальной температурой не более 70 ºС.


Надо сказать, что преимущества пластинчатых теплообменников заключаются не только в скромных размерах и способности обеспечить большой расход. Дело в том, что диапазон подбираемых площадей обмена и расходов у рассматриваемых агрегатов чрезвычайно широк. Самые малые из них имеют площадь поверхности менее 1 м2 и рассчитаны на протекание 0.2 м3 жидкости за 1 час, а наибольшие – 2000 м2 при расходе свыше 3600 м3/ч. Ниже в таблице представлены технические характеристики, которые показывает эксплуатация пластинчатых теплообменников известного бренда ALFA LAVAL:

технические параметры эксплуатации теплообменника

По исполнению теплообменные агрегаты бывают следующих видов:

  • разборные: наиболее распространенный вариант, позволяющий быстро и качественно осуществлять ремонт и обслуживание скоростного теплообменника;
  • паяные или сварные: такие аппараты не имеют резиновых прокладок, там пластины жестко соединены между собой и помещены в цельный корпус.

паянный теплообменный агрегат

Примечание. Именно паяные теплообменники многие мастера-умельцы используют для частного дома, приспосабливая их под нагрев или охлаждение воды.

Обвязка теплообменника

Как правило, установка подобного теплосилового оборудования предусматривается в индивидуальных котельных многоквартирных жилых домов или промышленных предприятий, а также в тепловых пунктах централизованных систем теплоснабжения. Цель – получить воду для нужд ГВС температурой до 70 ºС либо теплоноситель до 95 ºС при использовании паровых и высокотемпературных водогрейных котлов.

теплосиловой агрегат для нужд ГВС

Ввиду небольших габаритов и веса монтаж теплообменника производится достаточно просто, хотя мощные агрегаты и требуют устройства фундамента. В любом случае выполняется заливка фундаментных болтов, с помощью которых аппарат надежно фиксируется на своем месте. Теплоноситель всегда подводится к верхнему патрубку, а обратный трубопровод присоединяется к штуцеру, расположенному под ним. Подача нагреваемой воды подключается, наоборот, к нижнему патрубку, а ее выход – к верхнему. Простейшая схема обвязки пластинчатого теплообменника показана ниже:


схема подключения

В контуре подачи теплоносителя обязательно присутствует свой циркуляционный насос, установленный на подающем трубопроводе. В соответствии с правилами помимо рабочего насоса параллельно ставится резервный такой же мощности. Если же в системе ГВС имеется магистраль обратной циркуляции, то схема подключения приобретает такой вид:

способ монтажа теплообменника

Здесь используется тепло воды, идущей по замкнутому контуру ГВС, к ней подмешивается холодная из водопровода и только потом смесь поступает в теплообменник. Регулирование температуры на выходе осуществляет электронный блок, управляющий клапаном на линии подачи теплоносителя. Ну и последняя схема – двухступенчатая, позволяющая использовать тепловую энергию обратной линии системы отопления:

двухступенчатая обвязка скоротного теплового оборудования

Схема позволяет существенно экономить, снимая лишнюю нагрузку с котлов и используя имеющееся тепло по максимуму. Следует обратить внимание, что во всех схемах на входе в скоростной теплообменник устанавливаются фильтры. От этого зависит надежная и долговечная работа агрегата.


пластинчатые теплообменники

Заключение

Как показывает практика, современный пластинчатый теплообменник все же немного уступает старому кожухотрубному по одному критерию. Выдавая большой расход, скоростные агрегаты немного недогревают выходящую жидкость, этот недостаток обнаружен специалистами во время эксплуатации. Поэтому при подборе количества и площади пластин принято делать небольшой запас.

Источник: cotlix.com

В современном мире уже созданы десятки разнообразных инженерных решений, которые решают большое количество бытовых проблем. Особенно важным является вопрос поддержания оптимальной температуры в доме, на производстве и в других условиях, поэтому и были изобретены теплообменники.


Что такое теплообменник? Это теплообменное оборудование, которое передает энергию тепла от одного объекта или среды другому. Подобные инженерные хитрости широко применяются для нагрева воды или воздуха в быту, однако некоторые виды теплообменников используются действительно уникально.

Какие бывают теплообменники (теплообменные аппараты)?

Другим менее популярным вариантом является смесительный теплообменный аппарат, в котором жидкости или газы непосредственно смешиваются друг с другом. Практика показывает, что зачастую производители отдают предпочтение именно первому варианту, так как им важно сохранить химическую «чистоту» жидкости. Также существуют направления промышленности, где используются теплообменники смесительные достаточно активно. Они особенно популярны в тех процессах, где состав сред имеет похожий состав.

Основные виды теплообменников (теплообменных аппаратов)

Инженеры старались создать все новые типы теплообменных аппаратов, так как зачастую для каждой промышленности или даже задачи требовалось абсолютно новое устройство теплообменника. Многие специалисты отмечают, что основные виды теплообменников состоят из четырех категорий: пластинчатый, кожухотрубный, витой и спиральный.

Конструкция пластинчатых теплообменников

Самыми популярными среди остальных стали пластинчатые теплообменники, благодаря малогабаритности, лёгкой чистке, быстрой сборке и с минимальным гидравлическим сопротивлением. В структуру аппаратов входят концевые камеры, стяжные шпильки, стойки для крепления и пластины с резиновыми прокладками, разделённых между собой. Производятся пластины из тонких листов стали.


Герметичность оборудования сравнительно с окружающей средой достигается с помощью уплотнений. Они также не допускают смешивание сред, участвующих в процессе теплообмена, которые присоединяются к поверхности пластин. Направление рабочей среды может протекать одновременно по потоку и против него, так и по отдельности

Пластины устанавливаются одна за другой с поворотом на 180 градусов, создавая пакет из четырёх коллекторов, которые подводят и отводят жидкость. Крайние пластины не принимают участия в ходе теплообмена.

Принцип работы пластинчатого теплообменника

Работает теплообменник по перекрёстной схеме. Секции по очереди наполняются подогреваемой и остужаемой средой. Посредством пластин совершается теплообмен. Уплотнители различной формы обеспечивают заполнение секций.

Пластинчатые теплообменные аппараты организованы таким образом, что среды перемещаются навстречу друг другу: охлаждаемая выходит снизу и выходит в верхний патрубок, а нагревающая наоборот. Подобным образом действует похожие аппараты. Отличается только модель для ГВС тем, что средой, проходящей через корпус, может быть только вода.

Сферы применения теплообменников (теплообменных аппаратов)

Основные виды теплообменников применяются практически в каждой сфере человеческой деятельности, однако чаще всего они встречаются:


Источник: sn22.ru

Пластинчатые паяные теплообменники применяют в холодильной технике, климатизационном оборудовании, выступая в качестве конденсатора или испарителя. Также косвенно их можно использовать в пищевой промышленности в роли охладителей или пастеризаторов молочной продукции, пивных напитков и т.д.

payanyi teploobmennik

Паяные пластинчатые теплообменники зачастую называют сварными пластинчатыми теплообменниками, что в своем роде правильно, потому что процесс пайки нержавеющих пластин схож с процессом сварки.

Конструкция пластинчатого паяного теплообменника:

Паяные пластинчатые теплообменники изготавливают из нержавеющих гофрированных пластин, которые в свою очередь соединяются друг с другом, а в итоге в целый пакет посредством пайки в вакууме, где используется медный или никелевый припой. После того как все пластины спаяли в готовую конструкцию (главное это сделать грамотно), к внешним пластинам крепят патрубки, которые потом уже на объекте, либо каком либо строительстве соединяются с трубопроводными системами дома, коттеджа или промышленного предприятия.

payanyi teploobmennik 1

При соединении пластин в пластинчатых паяных теплообменниках, соседние соединяются так что бы гофры у них были направлены в разные стороны. В некоторых точках стенки пластин соединяются, это нужно в качестве опорных точек (точек жесткости) для всего пакета пластин. По всем данным точкам производится дополнительная пайка. Это необходимо для того, чтобы пластинчатый теплообменник смог выдержать высокое давление и не разорваться где-нибудь по шву. Причем давление может достигать 4 и даже 5 МПа.

payanyi teploobmennik 3

Паяные пластинчатые теплообменники отличаются многими моментами в изготовлении от разборных пластинчатых. Это связано с тем, что в отличие от разборных в паяных теплообменниках края пластин загибаются друг к другу, в месте загиба между пластинами прокладывается медная пластинка (толщина ее такая же как и сама гофрированная пластина). После чего весь пакет пластин сдавливается более прямыми и толстыми пластинами с одной и другой стороны, к которым впоследствии привариваются патрубки для соединения с трубопроводными системами. В конце всего процесса соединения, сдавливания и приваривания, производится пайка пакета пластин в специальной вакуумной камере.

В паяных пластинчатых теплообменниках в роли припоя используют медь (Меднопаяный пластинчатый теплообменник). Если же в теплообменнике по заказу нужно использовать в качестве рабочей среды какую то агрессивную жидкость, например, аммиак, то припой делаю никелевым, и такие теплообменники называются никелевыми.

payanyi teploobmennik 2

Преимущества паяных пластинчатых теплообменников:

Основными преимуществами паяных пластинчатых теплообменников является то, что они малогабаритны и очень экономичны. Это связано с тем, что у паяных нет зажимных плит, поэтому они раз в десять легче разборных теплообменников, а также по цене паяные выигрывают в среднем треть от цены разборных, при одинаковой мощности и характере теплообмена.

Также паяные пластинчатые теплообменники могут выдерживать длительные нагрузки по температуре, даже если греющая рабочая среда температурой выше 150С.

При загрязнении паяных пластинчатых теплообменников процесс чистки и промывки занимает максимум 3 часа, причем очистку модно проводить, не разбирая сам теплообменник. Это можно сделать химической промывкой при использовании специальной химии, которая не будет разрушать поверхность пластин и медный (никелевый) припой. Таким образом, процесс обслуживания не требует больших перерывов в работе всей системы теплоснабжения, и причем не требуется текущего обслуживания.

В процессе монтажа паяные теплообменники очень просто устанавливать. Благодаря турбулентности потока рабочей среды происходит самоочистка каналов между пластин.

payanyi teploobmennik 4

Источник: q-teplota.ru

О принципе действия

Пластинчатый теплообменник принцип действия имеет достаточно сложный. Пластины в конструкции располагаются под углом в 180 градусов относительно друг друга. Зачастую производители делают это попакетно, следовательно, компонуются сразу четыре изделия и создается пара коллекторных контуров – подача жидкости и «обратка». Хотя стоит знать, что крайние пластины не принимают никакого участия в процессе теплообмена.

Схема, принципа работы теплообменника

схема работы пластинчатого теплообменника

Собственно, с принципом действия устройства все более-менее понятно. Сейчас же рассмотрим классификацию данной конструкции – в соответствии с ней теплообменники могут быть трех типов.

  • Одноходовые приборы, в которых теплоноситель циркулирует перманентно, в одном и том же направлении по всей площади системы. Помимо того, здесь имеет место и противоток жидкостей.
  • Многоходовые приборы, которые можно использовать исключительно в тех случаях, когда разница в температуре носителей тепла не слишком высокая. Потоки жидкости здесь будут двигаться в различных направлениях.
  • многоходовой теплообменник

  • Двухконтурные приборы. Они отличаются тем, что состоят из двух автономных контуров, находящихся на какой-либо из сторон. И если постоянно регулировать термальную мощность, то данной оборудование будет идеальным вариантом для покупки.

Одноконутрный теплообменник

Что же касается технических характеристик таких теплообменников, то они следующие:

  • рабочая температура колеблется в пределах между -25 и +200 градусами;
  • потребление рабочей жидкости составляет от 5 до 2 000 кубометров в час;
  • площадь системы – разная, в зависимости от того, с какой целью ее будут использовать.

Средние цены пластинчатые теплообменники

Средняя стоимость варьируется между 20 000 и 80 000 рублей, более конкретная цифра зависит от количества пластин, а значит, от мощности устройства.

Модель Фото Тип среды Мощность Темпер-атура среды на входе С Темпера-тура среды на выходе С Количе-ство пластин Цена
Пластинчатый теплообменник НН №04 Пластинчатый теплообменник фото вода — вода 21500 ккал/ч греющая среда 95
нагреваемая среда 5
греющая среда 75
нагрева-емая среда 65
13 от 24000
Пластинчатый теплообменник НН №08 Пластинчатый теплообменник НН №08 Ридан вода — вода 64500 ккал/ч греющая среда 95
нагреваемая среда 5
греющая среда 75
нагрева-емая среда 65
23 от 37000
Пластинчатый теплообменник НН №14 Пластинчатый теплообменник НН №14 вода — вода 258000 ккал/ч греющая среда 95
нагреваемая среда 5
греющая среда 75
нагрева-емая среда 65
18 от 65000
Пластинчатый теплообменник НН №20 Пластинчатый теплообменник НН №20 вода — вода 86000 ккал/ч греющая среда 95
нагреваемая среда 70
греющая среда 75
нагрева-емая среда 95
18 от 77000

Таблица средних цен и характеристик на различные модели теплообменников

Конструктивные особенности пластинчатых теплообменников

Прибор данного типа представляет собой сборную конструкцию, которая состоит из:

  • недвижимой плиты;
  • направляющих, расположенных сверху и снизу и представляющих собой длинные металлические пруты, которые имеют круглое сечение;
  • подвижной плиты;
  • крепежей, стягивающих между собой обе плиты;
  • соответствующего количества пластин.

Сама рама может иметь самые разнообразные габариты – все в данном случае зависит от того, какова мощность теплообменника. Другими словами, чем большим будет количество этих пластин, тем выше будет производительность оборудования. Следовательно, общий вес и габариты также увеличатся.

схема пластинчатого теплообменника

Схематическое устройство пластинчетого теплообменника

Помимо того, упомянутого выше стягивания пластин более чем достаточно для установки требуемой плотности состыковки резиновых прокладок, находящихся на соседствующих пластинах. А если говорить о самом теплообменнике с точки зрения нагрузок, которые воздействуют на него, то те влияют преимущественно на прокладки с пластинами. В это же время крепежи с рамой являются всего лишь своего рода корпусом. По этой причинно целесообразно рассматривать не только их.

Видео – Пластинчатый теплообменник принцип работы (ТИЖ)

Роль пластин в конструкции

Прежде всего, стоит сказать о том, что такие пластины производятся исключительно из «нержавейки». Каждый знает, что данный материал невосприимчив к негативному влиянию теплоносителя низкого качества, равно как и к повышенной температуре в камере сжигания. Следовательно, изготовители сделали поистине правильный выбор. В технологическом плане производственная процедура представляет собой обычную штамповку. И в этом нет ничего удивительного, так как изготовить плиту, имеющую сложную конфигурацию, причем таким образом, чтобы использованный материал сохранил свои первоначальные свойства, возможно исключительно по данной технологии.

роли пластин в конструкции

Сами плиты имеют весьма необычное устройство. Они изготавливаются с применением специальной технологии «Офф-сет». Она заключается в создании на плоскостях канавок, способных располагаться как симметрично, так и асимметрично. Благодаря подобного рода рельефной плоскости площадь теплоотбора увеличивается, более того, сам теплоноситель распределяется равномерно.

Для крепления резиновых прокладок к пластинам используются клипсовые соединения. Крепеж достаточно прост, но при этом предельно надежен. Да и сами прокладки при этом выполнены так, что самостоятельно центруются по направляющей – точнее говоря, на автомате. А это значит, что пользователю не нужно ничего придерживать, подталкивать и проч., поскольку и без его вмешательства все будет находиться на своих местах. И по причине особой окантовки манжеты образуется вспомогательный барьер, способствующий минимизации утечки носителя тепла.

Пластины и прокладки для теплообменника

На данный момент пластины такого рода производятся в двух модификациях, ознакомимся с ними.

  • Изделия, покрытые термально жестким рифлением с канавками, выполненными под углом в 30 градусов. У этих пластин повышен показатель теплопроводимости, но главный недостаток в том, что выдерживать большого давления жидкости они, увы, не могут.
  • Изделия с термально мягким рифлением. В данном случае угол равен уже 60-ти градусам. У этих пластин теплопроводимость достаточно низкая, зато давление в отопительной магистрали, которое они могут выдерживать, высокое.

К слову, если менять пластины в пластинчатом теплообменнике, принцип работы которого рассматривается в этой статье, то можно подобрать наиболее подходящий вариант отдачи тепла оборудованием в целом. Проще говоря, если теплоотдача будет высокой, то теплоноситель будет беспрепятственно двигаться по каналам.

Любопытный факт: в теплообменнике «кожухотрубного» типа (в нем труба находится в другой трубе) внутренний режим работы прибора является ламинарным.

О чем это говорит? Только об одном: при одних и тех же термотехнических параметрах габариты пластинчатого теплообменника примерно вчетверо меньшие. А значит, прибор во столько же раз более компактно.

Роль прокладок в конструкции

По причине строгих требований, касающихся герметичности приборов, прокладки начали производить из различных полимеров. Сегодня в большинстве случаев применяется материал под названием этиленпропилен, поскольку он прекрасно переносит повышенную температуру и воды, и даже пара.

фото прокладка в пластинчатом теплообменнике

Хотя у материала есть существенный недостаток – под действием масла или жира он разрушается моментально. К слову, диапазон выдерживаемой температуры для этиленпропилена составляет 30-160 градусов, что, по сути, очень даже неплохо. Но отметим, что это далеко не единственный материал, который может использоваться с подобной целью.

Зачастую прокладки фиксируются посредством специальных замков-клипсов, хотя может использоваться и клеевой состав.

Сферы применения пластинчатых теплообменников

Пластинчатый теплообменник, принцип работы которого был рассмотрен выше, имеет достаточно широкое применение. Их можно встретить практически везде, где они, собственно, вообще могут встречаться.

  1. В нефтяной отрасли – нефтяным продуктам, как мы знаем, очень часто требуется охлаждение.
  2. В централизованном отоплении, в ГВС, для подогрева воды в бассейнах и проч.
  3. В автомобилестроении.
  4. В металлургии, машиностроении – там пластинчатые теплообменники применяются для того, чтобы при необходимости охлаждать различные станки и другое оборудование.
  5. В пищевой отрасли – здесь охлаждать следует не только оборудование, но и, к примеру, молочные продукты. И описываемая система является для этого идеальным вариантом!
  6. В судостроении – немногие знают, но на кораблях порой нужно охлаждать системы или, напротив, нагревать морскую воду. Для этого отлично подходит теплообменник.

основные сферы применения

Разумеется, это далеко не полный перечень того, где можно использовать пластинчатые конструкции.

Видео – Как собрать разборной теплообменник

Особенности монтажа и установки

Теплообменник крепится в строгом соответствии с инструкцией производителя. Он прижимается к стене (для этого используется специальная лента либо консоль). Кроме того, устройство можно закрепить посредством уголка, зафиксированного в нижней части корпуса. В дополнение его еще свяжут трубы.

монтаж теплообменника

особенности монтажа пластинчатого теплообменника

Другой важный момент – диаметр подключения (дело в том, что устройство достаточно компактно). Объем жидкости в нем незначительный, равно как и расстояние между пластинами. Поэтому нужно подбирать только такой диаметр, который подходит, или же несколько больший – к примеру, один дюйм. Да и мощность должна подбираться исключительно с запасом (можно на 50 или даже на 100 процентов), поскольку на габариты данный параметр никак не влияет. Но производительность при этом увеличивается!

Видео – Подключение пластинчатого теплообменника

На этом все, вот мы и разобрали это устройство, предназначенное для распределения тепла. Теплых вам зим!

Источник: v-teplo.ru


Leave a Comment

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.