Как получить электричество из воздуха


Дата публикации: 11 октября 2019

Получение электричества из воздуха может показаться чем-то из области фантастики. Действительно, на столь смелое заявление оппоненты могут возразить, что в окружающей среде нет мощного источника электрической энергии, и единственное, что имеет право на существование, это солнечные батареи и ветрогенераторы. Однако их мнение не вполне соответствует действительности. Явление статического электричества в воздухе, знакомое практически каждому человеку, означает присутствие электроэнергии в пространстве в незначительном количестве. Научившись накапливать ее и использовать для работы бытовых энергозависимых приборов, человечество совершит прорыв в истории науки и заодно получит в свое распоряжение тысячи киловатт дешевых энергоресурсов с неисчерпаемым запасом.

Впервые попытку получить бесплатное электричество из воздуха своими руками предпринял знаменитый ученый-физик Никола Тесла.


длительное время занимался исследованиями природы статического электричества и убедился в возможности его накопления. Более того, Тесла сумел создать прибор, «собирающий» статику из воздуха и хранящий накопленный заряд. К сожалению, это устройство не сохранилось, зато удалось восстановить и расшифровать рабочие записи и результаты исследований ученого. На их основе физикам удалось создать аналогичный прибор, способный получать электроэнергию из окружающей среды.

Статическое электричество из воздуха на службе вашего быта

Опыты Тесла повторили многие специалисты и частные лица — любители из разных стран мира. Чьи-то опыты оказались бесплодными, но некоторым удалось приблизиться к ответу на вопрос, как получать электричество из воздуха как Тесла. В числе разработок – проект изобретателя Стивена Марка. Сконструированный им тороидальный генератор способен накапливать и удерживать значительное количество энергии, которого вполне достаточно для питания слабых источников света и бытовой техники. Работая без дополнительной подзарядки в течение длительного времени, генератор электричества из воздуха стабильно подавал бесплатную энергию на подключенные устройства-потребители, не оказывая негативного влияния на их техническое состояние и работоспособность.


Электричество из воздуха: схемы, прошедшие проверку качества

Сегодня научные журналы и тематические сайты предлагают немало схем и чертежей для электричества из воздуха, пригодных для реализации в домашних условиях. Тем более что есть благоприятные условия для воплощения подобных замыслов. Разветвленная сеть линий электропередач дополнительно насыщает воздух ионами в огромном количестве. И остается только научиться аккумулировать рассеянную энергию и использовать ее для бытовых нужд.

Первый вариант – земля в качестве основания и металлическая пластина, играющая роль антенны. Здесь нет необходимости использовать накопительные или преобразовательные устройства. Энергетический потенциал между землей и антенной может увеличиваться по мере накопления заряда. Действие такой схемы аналогично действию молнии: при накоплении достаточного количества электричества возникает разряд и видимое искрение. Единственная сложность – предсказать его величину в следующий момент времени невозможно. А пустить для бытовых устройств крупный разряд – значит сжечь их в первую же секунду.

В числе достоинств предлагаемого решения:

  • Доступность реализации в домашних условиях;
  • Минимальную себестоимость благодаря отказу от покупки дорогостоящих устройств и дополнительных приборов. А металлическая пластина с токопроводящими свойствами легко найдется в запасах у любого домашнего мастера.

Электричество из воздуха: схемы, прошедшие проверку качества

Однако в предложенном проекте есть и недостатки. О первом сказано выше: это невозможность рассчитать силу заряда хотя бы приблизительно. И еще один момент, касающийся вопросов безопасности: открытый контур способен притягивать грозовой разряд, убийственная мощность которого опасна для жизни.

Схема получения электричества из воздуха по проекту Стивена Марка

Генератор Стивена Марка также доступен для реализации в бытовых условиях. Его работоспособность подтверждает патентование технологии, которой предрекал большое будущее ее изобретатель. Принцип прост: внутри кольцевой конструкции устройства токи и магнитные вихри резонируют, приводя к появлению разряда сравнительно высокой мощности.

Схема получения электричества из воздуха выглядит следующим образом:

  • Основание прибора Марка – отрезок фанеры, резина или полиуретан, на которые будут уложены две коллекторные катушки и четыре катушки управления. Последние должны соответствовать следующим параметрам: внутренний и наружный диаметр кольца соответственно 18 и 23 см, ширина 2,5 см, толщина 0,5 см.

  • Внутренняя коллекторная катушка наматывается с применением медного провода, в идеале намотка должна быть в три витка.
  • Управляющие катушки наматываются одножильными проводами плоской намоткой с зазором между витками не более 15 мм. Для монтажа последней катушки применяют изолированный медный провод, который располагают по всей площади основания.
  • Устанавливается конденсатор на 10 микрофарад.
  • Выводы катушек соединяются. Для питания подбираются транзисторы, параметры которых учитывают тип проводов и прочие особенности конструкции.

Схема получения электричества из воздуха по проекту Стивена Марка

Устройство готово к тестированию и первым пробным подключениям к маломощному энергозависимому устройству.

Несколько полезных советов по технике безопасности

  • Непредсказуемость статического электричества требует внимательного конструирования с учетом полярности, правильности подключения и изоляции устройства;
  • Испытания лучше проводить в помещении, откуда своевременно удалены легковоспламеняющиеся и взрывоопасные устройства.

Для тестирования лучше подобрать «ненужный» прибор, порча которого вследствие допущенных ошибок не принесет разочарования. И не поленитесь проверить готовый генератор несколько раз, прежде чем испытывать его работоспособность.

Источник: altenergiya.ru

Как получить электричество из воздуха

Представьте себе мир, в котором смартфоны, ноутбуки, носимые устройства и другая электроника работают без аккумуляторов. Исследователи из Массачусетского технологического института и других стран сделали шаг в этом направлении, выпустив первое полностью гибкое устройство, которое может преобразовывать энергию из сигналов Wi-Fi в электричество, которое может питать электронику.

Устройства, которые преобразуют электромагнитные волны переменного тока в электричество постоянного тока, называются «rectennas» («ректенны»). Исследователи демонстрируют новый вид ректенн, описанный в исследовании в журнале Nature, в котором используется гибкая радиочастотная (РЧ) антенна, которая использует электромагнитные волны — в том числе те, которые несут Wi-Fi — в качестве источника переменного тока.


Затем антенна подключается к новому устройству из двухмерного полупроводника толщиной всего в несколько атомов. Сигнал переменного тока попадает в полупроводник, который преобразует его в постоянный ток, который можно использовать для питания электронных схем или перезарядки аккумуляторов.

Таким образом, устройство без батареи пассивно захватывает и преобразует повсеместные сигналы Wi-Fi в полезную мощность постоянного тока. Кроме того, устройство является гибким и может быть изготовлено целыми рулонами для покрытия очень больших площадей.

«Что, если мы могли бы разработать электронные системы, которые мы обернем вокруг моста, покроем целую магистраль или стены вашего офиса и дадим энергию всей электронике, которая вас окружает?» — говорит соавтор статьи Томас Паласиос, профессор кафедры электротехники и компьютерных наук в MIT. «Мы придумали новый способ питания электронных систем будущего — собирать энергию Wi-Fi таким образом, который легко разворачивается на больших площадях — чтобы донести энергию до каждого объекта вокруг нас».

Как получить электричество из воздуха
Ректенна, использующаяся для питания различных RFID (идентификационных) устройств — например, электронных меток.


Перспективные возможные сценарии использования для предлагаемой ректенны включают питание гибкой и носимой электроники, медицинских устройств и датчиков для интернета вещей. Гибкие смартфоны, например, являются новым трендом на рынке для крупных технологических фирм. В экспериментах устройство исследователей может генерировать около 40 микроватт энергии при воздействии типичных уровней мощности сигналов Wi-Fi (около 150 микроватт). Этого более чем достаточно для работы подсветки простого мобильного дисплея или кремниевых чипов.

По словам соавтора Хесуса Граьяла, исследователя из Технического университета Мадрида, есть еще одно возможное применение — обеспечение передачи данных с имплантируемых медицинских устройств. Например, исследователи уже разрабатывают «умные» таблетки, которые могут проглатывать пациенты, после чего те будут передавать данные о состоянии здоровья обратно на компьютер для диагностики.

«В идеале вы не хотите использовать аккумуляторы для питания этих систем, потому что если они будут включать литий, пациент может умереть», — говорит Граьял. «Намного лучше собирать энергию из окружающей среды, чтобы питать эти маленькие лаборатории внутри тела и передавать данные на внешние компьютеры».

Все ректенны полагаются на компонент, известный как «выпрямитель», который преобразу.


есколько гибких ректенн, о которых сообщалось до сих пор, работают на низких частотах и ​​не могут захватывать и преобразовывать сигналы в гигагерцовых частотах, где преобладает большинство сигналов сотового телефона и Wi-Fi.

Для создания своего выпрямителя исследователи использовали новый двумерный материал под названием дисульфид молибдена (MoS2), который при толщине всего в три атома является одним из самых тонких полупроводниковых приборов в мире. При этом команда использовала необычное поведение MoS2: при воздействии определенных химикатов атомы материала перестраиваются таким образом, что действует как переключатель, вызывая фазовый переход от полупроводника к металлическому материалу. Эта структура известна как диод Шоттки, который является соединением полупроводника с металлом.

Как получить электричество из воздуха
Новая гибкая ректенна с дисульфидом молибдена.


«Использовав MoS2 в двумерном полупроводниково-металлическом фазовом переходе, мы создали атомно-тонкий сверхбыстрый диод Шоттки, который одновременно минимизирует сопротивление и паразитную емкость», — говорит первый автор и постдок EECS Сюй Чжан.

Паразитная емкость — это неизбежная ситуация в электронике, когда некоторые материалы накапливают небольшой электрический заряд, что замедляет цепь. Следовательно, более низкая емкость означает повышенную скорость работы выпрямителя и более высокие рабочие частоты. Паразитная емкость нового диода Шоттки на порядок меньше, чем у современных современных гибких выпрямителей, поэтому он работает намного быстрее при преобразовании сигналов и позволяет работать в диапазоне волн до 10 гигагерц.

«Такая конструкция позволила создать полностью гибкое устройство, достаточно быстрое для охвата большинства радиочастотных диапазонов, используемых нашей повседневной электроникой, включая Wi-Fi, Bluetooth, сотовую связь, LTE и многие другие», — говорит Чжан.

Описанная работа предоставляет чертежи для других гибких устройств, преобразующих Wi-Fi в электричество со значительной производительностью и эффективностью. Максимальная выходная эффективность для текущего устройства составляет 40 процентов, в зависимости от входной мощности входа Wi-Fi. При типичном уровне мощности Wi-Fi коэффициент полезного действия выпрямителя с использованием MoS2 составляет около 30 процентов. Для справки, лучшие на сегодняшний день ректенны, изготовленные из жесткого более дорогого арсенида кремния и галлия, имеют КПД до примерно 50-60 процентов.


Сейчас команда, включающая в себя более 15 исследователей, планирует построить более сложные системы и повысить эффективность. Работа стала возможной, в частности, благодаря сотрудничеству с Техническим университетом Мадрида в рамках Международной научно-технической инициативы MIT (MISTI). 

Источник: www.iguides.ru

Большой Сфинкс в Гизе: когда наступит конец мира

Самая большая игрушечная железная дорога в мире

Как получить электричество из воздуха

Аэропорт представляет собой копию международного аэропорта Гамбурга и включает в себя 40 самолетов, которые совершают взлет и посадку, и 90 …

Где находится чаша Грааля?

Как получить электричество из воздуха

Сразу следует сказать, что «Грааль» или «Чаша Грааля» не является предметом или явлением, которое было известно отцам церкви. Никто из…

Петер Гуркос — тайна психометрии

Как получить электричество из воздуха

На самом деле существовало достаточно много детективов, применявших психометрию, однако только двое из них официально вошли в историю. Первым…

Предсказания Мерлина

Как получить электричество из воздуха

Еще в юном возрасте Мерлину пришлось применить свои способности предсказателя. В те времена над бриттами царствовал король Вортигерн, который противостоял…

Су-30М2 и Су-30СМ

Как получить электричество из воздуха

Представители авиационного соединения Восточного военного округа начали приемку четырех многоцелевых истребителей — Су-30СМ и Су-30М2 на предприятиях-изготовителях ОАО Корпорация Иркут и…

Много лет ученые ищут идеальный альтернативный источник электроэнергии, который позволил бы добывать ток из возобновляемых ресурсов. О том, как получить статическое электричество из воздуха, задумывался еще Тесла в 19 веке, и сейчас ученые пришли к выводу, что да, это вполне реально.

Виды добычи

Альтернативное электричество может добываться из воздуха двумя способами:

  1. Ветрогенераторами;
  2. За счет полей, пронизывающих атмосферу.

Как известно, электрический потенциал имеет свойство накапливаться в течение определенного времени. Сейчас атмосфера изнизана различными волнами, производящимися электрическими установками, приборами, естественным полем Земли. Это позволяет говорить о том, что электричество из атмосферного воздуха можно добыть своими руками, даже не имея никаких специальных приспособлений и схем, но про особенности токопроизводства по этому варианты мы расскажем ниже.

Фото – грозовая батарея

Ветрогенераторы – это давно известные источники альтернативной энергии. Они работаю за счет преобразования силы ветра в ток. Ветряной генератор – это устройство, способное работать продолжительное время и накапливать энергию ветра. Данный вариант широко используется в различных странах: Нидерландах, России, США. Но, одной ветряной установкой можно обеспечить ограниченное количество электрических приборов, поэтому для питания городов или заводов устанавливаются целые поля ветроустановок. В использовании этого способа есть как достоинства, так и недостатки. В частности, ветер – это непостоянная величина, поэтому нельзя предугадать уровень напряжения и накопления электричества. При этом, это возобновляемый источник, работа которого совершенно не вредит окружающей среде.

Как получить электричество из воздуха Фото – ветряки

Видео: создание электричества из воздуха

Как добыть энергию из воздуха

Простейшая принципиальная схема не включает в себя никаких дополнительных накопительных устройств и преобразователей. По сути, требуется только металлическая антенна и земля. Между этими проводниками устанавливается электрический потенциал. Он со временем накапливается, поэтому это непостоянная величина и рассчитать его силу практически невозможно. Такое, вырабатывающее ток, устройство работает по принципу молнии – через определенный промежуток времени происходит разряд тока (когда потенциал достиг своего максимума). Таким образом, можно извлечь из земли и воздуха достаточно большое количество полезной электроэнергии, которой будет достаточно для работы электрической установки. Её конструкция подробно описывается в труде: «Секреты свободной энергии холодного электричества».

Как получить электричество из воздуха Фото – схема

Схема имеет свои достоинства :

  1. Простота в реализации. Опыт можно с легкостью повторить в домашних условиях;
  2. Доступность. Не нужно никаких приспособлений, самая обычная пластина из токопроводящего металла подойдет для реализации проекта.

Недостатки :

  1. Реализация схемы очень опасна. Нельзя рассчитать даже примерное количество ампер, не говоря уже про силу токового импульса;
  2. При работе образовывается своеобразный открытый контур заземления, к которому притягиваются молнии. Это является одной из самых главных причин, почему проект не «пошел в массы» – он опасен для жизни и производства. Удар молнии подчас достигает 2000 Вольт.

С этой точки зрения, свободное электричество, добытое при помощи ветрогенераторов более безопасно. Но тем ни менее, сейчас можно даже купить такой прибор (к примеру, ионизатор-люстра Чижевского).

Как получить электричество из воздуха Фото – люстра Чижевского

Но есть еще один вариант рабочей схемы – это генератор TPU электричества из воздуха от Стивена Марка. Это устройство позволяет получить определенное количество электроэнергии для питания различных потребителей, причем, делает он это без какой-либо подпитки из вне. Технология запатентована и многие ученые уже повторили опыт Стивена Марка, но из-за некоторых особенностей схемы она еще не пущена в обиход.

Принцип работы прост: в кольце генератора создается резонанс токов и магнитные вихри, они способствуют появлению в металлических отводах токовых ударов. Рассмотрим наглядно, как сделать тороидальный генератор, чтобы добыть электричество из воздуха:

Как получить электричество из воздуха

На этом конструирование можно считать завершенным. Теперь нужно соединить выводы. Предварительно нужно между выводами обратной земли и земли установить конденсатор на 10 микрофарад. Для запитки схемы используются скоростные транзисторы и мультивибраторы. Они подбираются опытным путем, т. к. их характеристики зависят от размера основания, видов провода и некоторых других особенностей конструкции. Для управления схемой можно использовать стандартная кнопка питания (ВКЛ – ВЫКЛ). Для более подробной информации рекомендуем просмотреть видео по генератору Стивена Марка в Xvid или TVrip-качестве.

Не менее нашумевшим открытием стал генератор Капанадзе. Этот бестопливный источник энергии был презентован в Грузии, сейчас он тестируется. Генератор позволяет добывать электричество из воздуха без использования сторонних ресурсов.

Как получить электричество из воздуха Фото – предположительная схема генератора Капанадзе

В основе его работы лежит катушка Теслы, которая расположена в специальном корпусе, накапливающем электроэнергию. В свободном доступе есть видео с конференции и опыты, но нет никаких документов, реально подтверждающих существование этого изобретения. Схема не разглашается.

Прошли новогодние праздники, отгорели гирляндами елки и пришли счета за электричество. Обогрев на основе электроконвекторов не перестает меня радовать общей стоимостью системы отопления загородного дома, но мысль о бесплатных киловатт-часах становится навязчивой. Поделюсь еще одной находкой из области очевидного и невероятного.

В этот раз электричество будем добывать непосредственно из воздуха. Про электростатические разряды все знают – если погладить пушистую кошку, а потом этой же рукой взяться за металлическую дверную ручку, то ударит током. Более интересный вариант – сняв шерстяной свитер, помыть руки водой из водопроводного крана. Она, оказывается, тоже бьется статическими разрядами! Но мы сегодня не об этом. Давайте упрощенно представим, как выглядит наша планета: твердая сфера – мы здесь, атмосфера – здесь летают птицы, ионосфера – здесь летают заряженные частицы.

Верхние слои атмосферы называют ионосферой не просто так – в ней очень много положительно заряженных частиц – ионов. Считается, что сама планета, в свою очередь, заряжена отрицательно. Отсюда и «заземление» — подключение отрицательного полюса в полярной электрической схеме к «земле».

Теперь, если представить нашу планету в виде сферического конденсатора (в вакууме) , то получится, что он состоит из двух обкладок – положительно заряженной ионосферы и отрицательно заряженной поверхности земли. Атмосфера играет роль изолятора. Через атмосферу постоянно протекают ионные и конвективные токи утечки этого «конденсатора». Но, несмотря на это, разность потенциалов между «обкладками» не уменьшается. Мы по прежнему наблюдаем молнии, полярные сияния, да и ионов меньше не становится.

Это значит, что существует некий генератор, который постоянно подзаряжает эту систему. Таким генератором является магнитное поле Земли, которое вращается вместе с нашей планетой, и солнечный ветер, ионизирующий верхние слои атмосферы. Если каким-либо способом подключить к этому генератору полезную нагрузку, мы получим практически вечный и бесплатный источник электроэнергии.

Как получить электричество из воздуха

Разность потенциалов атмосферы и земной поверхности может достигать от сотен до сотен тысяч вольт на разных высотах и в разное время года. Принципиальная схема «электростанции» в таком случае предельно проста: строим высокий столб-проводник (или поднимаем кабель аэростатом), хорошенько его заземляем и разрезаем у основания на нужной нам высоте. Верхняя часть столба будет иметь положительный заряд, нижняя- отрицательный. При помощи трансформаторов снижаем напряжение до нужных нам величин, попутно увеличив силу тока…и вроде как бы все. Включаем полезную нагрузку и радуемся.

Но в этой простоте и кроется вся хитрость. Проблема 1: высота проводника. Считается, что напряженность электрического поля планеты наиболее сильна у поверхности, т.е. на высоте 100-150 м. Выше строить сложно, хотя всегда есть аэростаты…Проблема 2, она же главная: чтобы по нашему проводнику пошел ток, т.е. движение электронов от отрицательного полюса к положительному, этот самый положительный полюс там должен быть. А если мы просто построим заземленный металлический столб, то электрическое поле в лице атмосферы его обойдет, «приняв» за новую точку поверхности земли. Таким образом, электроны, которые должны были бы двигаться снизу, от заземленной поверхности по проводнику вверх, к положительно заряженным ионам в атмосфере, этого делать не будут потому, что не смогут покинуть верхнюю часть проводника. Они останутся «запертыми» в нем, чем и обеспечится нейтральный заряд всей системы.

Как получить электричество из воздуха

Грубо говоря, с металла (проводника) через воздух и в воздух ток просто так не проходит. Если совсем заумно, то есть такие штуки, как векторы напряженности электрического поля. Векторы напряженности поля проводника направлены вверх, а векторы напряженности эл. поля атмосферы направлены вниз. Они встречаются в верхней точке проводника и складываясь, компенсируют друг друга. Общий заряд системы нейтрален, однако на кончике проводника сконцентрирована наибольшая напряженность электрического поля.

Как получить электричество из воздуха

Электроны не могут покинуть верхнюю точку проводника сами по себе, у них недостаточно энергии для того, чтобы покинуть проводник. Эта энергия называется работой выхода электрона из проводника и для большинства металлов она составляет менее 5 электронвольт, но даже ее пока взять неоткуда. А если помочь электронам покинуть проводник? Тогда все заработает – электроны будут подниматься вверх, захватываться электрическим полем и по проводнику пойдет ток. Нужно только постоянно помогать им в этом процессе. Весь фокус в устройстве, которое бы освобождало электроны из проводника в атмосферу и делало это постоянно.

Нам, получается, нужен трансформатор — проводник электронов в атмосферу. И такое чудо есть – катушки Тесла. Если избыточные электроны направлять в атмосферу при помощи коронных разрядов, или плазменной дуги или еще чего-то такого же плазменного, электроны будут покидать поверхность проводника и переходить в атмосферу по воздуху, еще как.

p align=»center»>
Как получить электричество из воздуха

Совсем упрощенно – коронным разрядом на верхушке нашего столба мы соединим обкладки «кондесатора», плазменная дуга – тот самый проводник, которым можно соединить отрицательно заряженный металл заземленного проводника с положительно заряженной атмосферой…живой пример – молния, ударившая в громоотвод.

Электростанции-столбы с генераторами тесла на верхушках, уходящие на сотни метров в высоту – выглядит футуристично, технократично и канонично! Мне эта картинка так нравится, что я не буду портить ее расчетами и формулами. Любопытные все найдут сами. И на всякий случай – первооткрывателем стать не получится, технологию недавно запатентовали.

Для того, чтобы получить электричество, нужно найти разность потенциалов и проводник. Соединив всё в единый поток, можно обеспечить себе постоянный источник электроэнергии. Однако в действительности приручить разность потенциалов не так-то просто.

Природа проводит через жидкую среду электроэнергию огромной силы. Это разряды молнии, которые, как известно, возникают в воздухе, насыщенном влагой. Однако это всего лишь единичные разряды, а не постоянный поток электроэнергии.

Человек взял на себя функцию природной мощи и организовал перемещение электроэнергии по проводам. Однако это всего лишь перевод одного вида энергии в другой. Извлечение электричества непосредственно из среды остаётся преимущественно на уровне научных поисков, опытов из разряда занимательной физики и создания небольших установок малой мощности.

Проще всего извлекать электричество из твёрдой и влажной среды.

Единство трёх сред

Самой популярной средой в этом случае является почва. Дело в том, что земля – это единство трёх сред: твёрдой, жидкой и газообразной. Меду мелкими частичками минералов расположены капли воды и пузырьки воздуха. Более того, элементарная единица почвы – мицелла или глинисто-гумусовый комплекс представляет собой сложную систему, обладающую разницей потенциалов.

На внешней оболочке такой системы формируется отрицательный заряд, на внутренней – положительный. К отрицательно заряженной оболочке мицеллы притягиваются положительно заряженные ионы, находящиеся в среде. Так что в почве постоянно происходят электрические и электрохимические процессы. В более гомогенной воздушной и водной среде таких условий для концентрации электричества нет.

Как получить электроэнергию из земли

Поскольку в почве есть и электричество, и электролиты, то её можно рассматривать не только как среду для живых организмов и источник урожая, но и как мини электростанцию. Кроме того, наши электрифицированные жилища концентрируют в среде вокруг себя и то электричество, которое «стекает» чрез заземление. Этим нельзя не воспользоваться.

Чаще всего домовладельцы применяют следующие способы извлечения электроэнергии из грунта, расположенного вокруг дома.

Способ 1 — Нулевой провод –> нагрузка –> почва

Напряжение в жилые помещения подается через 2 проводника: фазный и нулевой. При создании третьего, заземлённого, проводника между ним и нулевым контактом возникает напряжение от 10 до 20 В. Этого напряжения достаточно для того, чтобы зажечь пару лампочек.

Таким образом, для подключения потребителей электроэнергии к «земляному» электричеству достаточно создать схему: нулевой провод – нагрузка – почва. Умельцы эту примитивную схему могут усовершенствовать и получить ток большего напряжения.

Способ 2 — Цинковый и медный электрод

Следующий способ получения электричества основан на использовании только земли. Берутся два металлических стрежня – один цинковый, другой медный, и помещаются в грунт. Лучше, если это будет грунт в изолированном пространстве.

Изоляция необходима для того, чтобы создать среду с повышенной солёностью, что несовместимо с жизнью – в таком грунте ничего расти не будет. Стержни создадут разницу потенциалов, а грунт станет электролитом.

Как получить электричество из воздуха

В самом простом варианте получим напряжение в 3 В. Этого, конечно мало для дома, но систему можно усложнить, увеличив тем самым мощность.

Способ 3 — Потенциал между крышей и землёй

3. Достаточно большую разность потенциалов можно создать между крышей дома и землёй. Если на крыше поверхность металлическая, а в земле – ферритовая, то можно добиться разницы потенциалов в 3 В. Увеличить этот показатель можно за счёт изменения размеров пластин, а также расстояния между ними.

Как получить электричество из воздуха

Выводы

  1. Изучая данный вопрос я понял, что современная промышленность не выпускает готовых устройства для получения электричества из земли, но это можно сделать и из подручного материала.
  2. Однако следует учесть, что эксперименты с электричеством опасны. Лучше если вы все же привлечёте специалиста, хотя бы на заключительной стадии оценки уровня безопасности системы.

Вашему вниманию предлагаются интересные решения для слаботочных подручных электроприборов — фонариков, зарядных устройств, зажигалок. В статье приведены подробные фотографии и видеоинструкции, как собрать оригинальные источники электричества из подручных средств своими руками.

Ни для кого не секрет, что энергия буквально окружает нас и её носителями могут быть не только ценные полезные ископаемые — нефть, газ, уголь, но и металлы, углеводы, объекты, движущиеся в силу естественных причин. Рассмотрим подробнее, как же из подручных средств можно извлечь электрическую энергию.

В этом разделе мы наглядно продемонстрируем возможность извлекать электричество при помощи химической и электролитической реакции.

Угольные батареи из алюминиевых банок

Обычные угольные батарейки можно сделать своими руками. Для этого нам понадобится:

  1. Две жестяные банки из-под напитков по 0,5 л.
  2. Два графитовых стержня Ø 15-20 мм длиной по высоте банки + 20-30 мм.
  3. Обычный уголь или зола.
  4. Парафин или воск.
  5. Несколько медных проводов, нож.

Способ предусматривает воссоздание в увеличенном виде миниатюрных батареек для бытовых приборов.

Ход работы:

  1. Вырезать верха банок, оставляя борта.
  2. Установить на дно пенопласт толщиной 30 мм.
  3. Установить стержни внутрь банок, притопив их в пенопласт.
  4. Засыпать пазухи углём. До края банки должно остаться 10-15 мм.
  5. Залить пазухи подсоленной водой (1 ст. ложка на 1 литр).
  6. Залить растопленным парафином или воском свободное место в банке (до верха).

Каждая из банок будет идентична по энергоёмкости одной пальчиковой батарейке 1,5 В. Их можно соединять последовательно, подзаряжать и использовать в бытовых приборах — часах, приёмнике, светодиодных светильниках .

Батарейки из жестяных банок — пошаговое видео

Электричество из окисления

Белки, жиры и углеводы — источники энергии для организма человека. Она извлекается благодаря реакциям, проходящим в желудке и кишечнике. А именно — при воздействии желудочной кислоты на углевод высвобождается энергия, заключённая в нём. Что если попробовать заменить желудочную кислоту на более привычную — уксусную?

Для опыта нам понадобится:

  1. Сахар-рафинад — 2 куска.
  2. Анодированные саморезы 15 мм — 2 шт. (омеднённые и оцинкованные).
  3. Диодная лампочка на 1,5 В с проводами.

Ход работы:

  1. Просверливаем (не до конца!) отверстия в сахаре.
  2. Аккуратно, чтобы не раздавить рафинад, вкручиваем саморезы.
  3. Подсоединяем проводки лампочки к головкам саморезов.
  4. Смачиваем рафинад уксусом.

Видео, как извлечь электричество из сахара

Разумеется, дело тут не в сахаре, а в химическом процессе окисления меди и цинка. Рафинад является только средством для удержания кислоты. В точке контакта окисляемых поверхностей и кислоты происходит электрохимическая реакция с выделением небольшого количества энергии. Теоретически рафинад можно заменить на плотную губку, но саморезы со временем полностью окислятся и придут в негодность.

Более наглядно и точно этот эффект описан в аналогичном опыте с лимонами.

Электричество из лимона — видеоурок

И совсем народный способ с применением картофеля.

Видео — как извлечь ток из картошки

Аварийный источник энергии

Описанный выше принцип можно использовать для создания зарядного устройства из подручных средств. Для этого понадобятся простые детали, которые можно обнаружить в остатках материала на выброс после ремонта.

Для создания источника энергии понадобится:

  1. П-образные оцинкованные подвесы для гипсокартона (толщина значения не имеет) — 10 шт.
  2. Тонкая медная проволока — 15 м.
  3. Тонкая х/б ткань — несколько лоскутов, в крайнем случае — туалетная бумага.
  4. Нитки.
  5. Вода, соль.

Как получить электричество из воздуха

Ход работы (для одного элемента питания):

1. Обернуть пластины материей (или бумагой) в 2 слоя.

2. Намотать проволоку поверх материи (не густо, материя должна просматриваться).

3. От каждого элемента выпустить медный проводок.

4. Обернуть элемент материей ещё раз и зафиксировать нитками.

Как получить электричество из воздуха

5. Смочить подсоленной водой материю и поддерживать в мокром состоянии.

Один элемент выдаёт примерно 0,33 В. Для горения светодиода достаточно 5-ти элементов, для подзарядки телефона 13-14 шт.

Как получить электричество из воздуха

Электричество будет вырабатываться, пока идёт реакция окисления, т.е. пока между разными металлами есть электролит (подсоленная вода). Если элемент высох, достаточно его смочить, и реакция возобновится, пока соляной раствор не разъест цинковое покрытие. В идеале лучше использовать полностью цинковые пластины.

Отдельные детали и соль можно взять с собой в поход или держать уже готовые элементы вместе со свечой на случай отключения электричества. При наступлении темноты останется только соединить их вместе и смочить.

Пневматическая зажигалка

У газов, входящих в состав атмосферного воздуха, есть общее свойство — они могут сильно нагреваться при увеличении давления. Этот эффект можно использовать для изготовления «вечной» зажигалки. Способ изготовления потребует навыков слесаря.

Для работы понадобится:

  1. Стержень круглого сечения, возможно из мягкого металла (медь, алюминий) Ø 30 мм и длиной 200 мм.
  2. Стержень стальной Ø 10 мм и длиной 200 мм.
  3. Резиновые кольца из сантехнического набора.
  4. Х/б ткань, фольга.
  5. Доступ к токарному станку.

Ход работы:

  1. Высверлить толстый стержень под диаметр тонкого + 1 мм (цилиндр).
  2. На тонком стержне (поршень) сделать канавки для компрессионных колец.
  3. Высверлить углубление на конце поршня.
  4. Установить резиновые кольца в канавки.
  5. Ткань завернуть в фольгу и прожечь на огне (трут).

Для того чтобы использовать зажигалку, нужно в углубление поршня уложить трут и вставить его в цилиндр. Затем резко приложить усилие вдоль оси поршня и извлечь его из цилиндра. Трут на конце будет тлеть и из него можно раздуть пламя. Именно этот эффект использован в дизельных двигателях.

Пневматическая зажигалка в действии на видео

Примеры, описанные выше, может быть и не имеют высокой практической ценности, но наглядно демонстрируют возможности получения альтернативной энергии для решения ежедневных задач. В следующих статьях мы рассмотрим другие способы реализации природной и магнитной энергии.

Источник: masters-tut.ru

Прошли новогодние праздники, отгорели гирляндами елки и пришли счета за электричество. Обогрев на основе электроконвекторов не перестает меня радовать общей стоимостью системы отопления загородного дома, но мысль о бесплатных киловатт-часах становится навязчивой. Поделюсь еще одной находкой из области очевидного и невероятного.

В этот раз электричество будем добывать непосредственно из воздуха. Про электростатические разряды все знают – если погладить пушистую кошку, а потом этой же рукой взяться за металлическую дверную ручку, то ударит током. Более интересный вариант – сняв шерстяной свитер, помыть руки водой из водопроводного крана. Она, оказывается, тоже бьется статическими разрядами! Но мы сегодня не об этом. Давайте упрощенно представим, как выглядит наша планета: твердая сфера – мы здесь, атмосфера – здесь летают птицы, ионосфера – здесь летают заряженные частицы. 

Как получить электричество из воздуха

Верхние слои атмосферы называют ионосферой не просто так – в ней очень много положительно заряженных частиц – ионов. Считается, что сама планета, в свою очередь, заряжена отрицательно. Отсюда и «заземление» — подключение отрицательного полюса в полярной электрической схеме к «земле».

Теперь, если представить нашу планету в виде сферического конденсатора (в вакууме), то получится, что он состоит из двух обкладок – положительно заряженной ионосферы и отрицательно заряженной поверхности земли. Атмосфера играет роль изолятора. Через атмосферу постоянно протекают ионные и конвективные токи утечки этого «конденсатора». Но, несмотря на это, разность потенциалов между «обкладками» не уменьшается. Мы по прежнему наблюдаем молнии, полярные сияния, да и ионов меньше не становится.

Это значит, что существует некий генератор, который постоянно подзаряжает эту систему. Таким генератором является магнитное поле Земли, которое вращается вместе с нашей планетой, и солнечный ветер, ионизирующий верхние слои атмосферы. Если каким-либо способом подключить к этому генератору полезную нагрузку, мы получим практически вечный и бесплатный источник электроэнергии. 

Как получить электричество из воздуха

Разность потенциалов атмосферы и земной поверхности может достигать от сотен до сотен тысяч вольт на разных высотах и в разное время года. Принципиальная схема «электростанции» в таком случае предельно проста: строим высокий столб-проводник (или поднимаем кабель аэростатом), хорошенько его заземляем и разрезаем у основания на нужной нам высоте. Верхняя часть столба будет иметь положительный заряд, нижняя- отрицательный. При помощи трансформаторов снижаем напряжение до нужных нам величин, попутно увеличив силу тока…и вроде как бы все. Включаем полезную нагрузку и радуемся.

Но в этой простоте и кроется вся хитрость. Проблема 1: высота проводника. Считается, что напряженность электрического поля планеты наиболее сильна у поверхности, т.е. на высоте 100-150 м. Выше строить сложно, хотя всегда есть аэростаты…Проблема 2, она же главная: чтобы по нашему проводнику пошел ток, т.е. движение электронов от отрицательного полюса к положительному, этот самый положительный полюс там должен быть. А если мы просто построим заземленный металлический столб, то электрическое поле в лице атмосферы его обойдет, «приняв» за новую точку поверхности земли. Таким образом, электроны, которые должны были бы двигаться снизу, от заземленной поверхности по проводнику вверх, к положительно заряженным ионам в атмосфере, этого делать не будут потому, что не смогут покинуть верхнюю часть проводника. Они останутся «запертыми» в нем, чем и обеспечится нейтральный заряд всей системы. 

Как получить электричество из воздуха

Грубо говоря, с металла (проводника) через воздух и в воздух ток просто так не проходит. Если совсем заумно, то есть такие штуки, как векторы напряженности электрического поля. Векторы напряженности поля проводника направлены вверх, а векторы напряженности эл. поля атмосферы направлены вниз. Они встречаются в верхней точке проводника и складываясь, компенсируют друг друга. Общий заряд системы нейтрален, однако на кончике проводника сконцентрирована наибольшая напряженность электрического поля. 

Как получить электричество из воздуха

Электроны не могут покинуть верхнюю точку проводника сами по себе, у них недостаточно энергии для того, чтобы покинуть проводник. Эта энергия называется работой выхода электрона из проводника и для большинства металлов она составляет менее 5 электронвольт, но даже ее пока взять неоткуда. А если помочь электронам покинуть проводник? Тогда все заработает – электроны будут подниматься вверх, захватываться электрическим полем и по проводнику пойдет ток. Нужно только постоянно помогать им в этом процессе. Весь фокус в устройстве, которое бы освобождало электроны из проводника в атмосферу и делало это постоянно.

Нам, получается, нужен трансформатор — проводник электронов в атмосферу. И такое чудо есть – катушки Тесла. Если избыточные электроны направлять в атмосферу при помощи коронных разрядов, или плазменной дуги или еще чего-то такого же плазменного, электроны будут покидать поверхность проводника и переходить в атмосферу по воздуху, еще как.

<

p align=»center»>Как получить электричество из воздуха

Совсем упрощенно – коронным разрядом на верхушке нашего столба мы соединим обкладки «кондесатора», плазменная дуга – тот самый проводник, которым можно соединить отрицательно заряженный металл заземленного проводника с положительно заряженной атмосферой…живой пример – молния, ударившая в громоотвод.

Электростанции-столбы с генераторами тесла на верхушках, уходящие на сотни метров в высоту – выглядит футуристично, технократично и канонично! Мне эта картинка так нравится, что я не буду портить ее расчетами и формулами. Любопытные все найдут сами. И на всякий случай – первооткрывателем стать не получится, технологию недавно запатентовали.

Источник: itc.ua


Leave a Comment

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.