Полуторка на дровах


Газогенераторный Mercedes-Benz 170 VG 1935 года

Во времена Второй мировой войны в Европе почти каждое транспортное средство было переоборудовано на использование дров в качестве топлива.

Переоборудованные автомобили, работающие на древесном газу (также еще называемые газогенераторные автомобили) приобретают дополнительные элементы конструкции, которые обычно не прибавляют элегантности во внешнем виде. Зато такие автомобили очень эффективны, по сравнению со своими бензиновыми собратьями, в плане экономичности и экологичности, и могут равняться с электромобилями.

Наступающие смутные времена, рост цен на топливо и глобальное потепление приводят к возобновлению интереса к этой почти забытой технологии. Во всем мире, десятки любителей разъезжают по улицам городов на своих самодельных газогенераторных автомобилях.

Газогенераторный газ


Процесс образования газогенераторного газа (синтез газа), при котором органический материал превращается в горючий газ, начинает происходить под воздействием тепла при температуре 1400 ° C (2550 ° F).

Первое использование древесины для образования горючего газа начинается с 1870 года, тогда его использовали для уличного освещения и приготовления пищи.

В 1920-х годах, немецкий инженер Жорж Эмбер разработал генератор, вырабатывающий древесный газ для мобильного использования. Получаемый газ очищался, немного охлаждался, а затем подавался в камеру сгорания двигателя автомобиля, при этом, двигатель практически не нуждался в переделке.

Шестиоконный Traction Avant с прицепным газогенератором, работающим на древесных чуркахГазогенераторные автомобиле в г. Фалун, ШвецияВсе автомобили и автобусы были оборудованы газогенераторами. г. ЭскильстунаГазогенераторные гражданские автомобили. г. Боден

С 1931 года началось массовое производство генераторов Эмбера. В конце 1930-х годов, уже около 9000 транспортных средств использовали газогенераторы исключительно в Европе.

Вторая мировая война


Газогенераторные технологии стали обычным явлением во многих европейских странах во время Второй мировой войны, из-за ограничения и дефицита ископаемых и жидких видов топлива. В одной только Германии, к концу войны, около 500.000 автомобилей были дооборудованы газогенераторами для эксплуатации на древесном газу.

На фотографии выше показан газогенераторный гражданский автомобиль времен Второй мировой войны

Было построено около 3000 «заправочных станций», где водители могли запастись дровами. Не только легковые автомобили, но и грузовые автомобили, автобусы, трактора, мотоциклы, корабли и поезда были оснащены газогенераторными установками. Даже некоторые танки были оборудованы газогенераторными установками, хотя для военных целей немцы производили жидкие синтетические топлива (сделанные из дерева или угля).

В 1942 (когда технология еще не достигла пика своей популярности), насчитывалось около 73000 газогенераторных автомобилей в Швеции, во Франции 65000, 10000 в Дании, 9000 в Австрии и Норвегии, и почти 8000 в Швейцарии. В Финляндии числилось 43000 газогенератрных машин в 1944 году, из которых 30000 были автобусы и грузовые автомобили, 7000 легковые автомобили, 4000 тракторов и 600 лодок.

Газогенераторные автомобили также появилась в США и в Азии. В Австралии насчитывалось около 72000 газогенераторных автомобилей. В общей сложности более миллиона автомобилей использующих древесный газ находилось в эксплуатации во время Второй мировой войны.


73000 газогенераторных автомобилей в ШвецииБольшое количество газогенераторных автомобилей находилось в эксплуатации во время Второй мировой войныВ начале 1950-х годов, в Западной Германии осталось 20000 газогенераторов

После войны, когда бензин стал вновь доступен, газогенераторные технологии почти мгновенно канули в лету. В начале 1950-х годов, в Западной Германии осталось только около 20000 газогенераторов.

Программа исследований в Швеции

Рост цен на топливо и глобальное потепление привело к возобновлению интереса к дровам, как к непосредственному топливу. Многие независимые инженеры по всему миру занялись переоборудованием стандартных автомобилей на использование древесного газа в качастве автомобильного топлива. Характерно, что большая часть этих современных газогенераторов разрабатывается в Скандинавии.


Автомобиль, принимавший участие в 1957 году в Швеции в исследовательской программе, по возможности быстрого перехода автомобилей на использование древесного газа.

В 1957 году правительство Швеции создало исследовательскую программу для подготовки к возможности быстрого перехода автомобилей на использование древесного газа, в случае внезапной нехватки нефти. Швеция не имеет запасов нефти, но у нее есть огромные лесные массивы, которые могут использоваться в качестве топлива. Целью этого исследования была разработка улучшенной, стандартизированной установки, которая может быть адаптирована для использования на всех видах транспортных средств. Это исследование поддерживалось производителем автомобилей Volvo. В результате изучения работы автомобилей и тракторов на протяженности 100.000 км пробега, были получены большие теоретические знания и практический опыт.


Chevrolet El Camino 87 года

Некоторые финские любители инженеры использовали эти данные для дальнейшего развития технологии, например Юха Сипиля (на изображении слева).

Газогенераторная установка вырабатывающая древесный газ, выглядит как большой подогреватель воды. Эту установку можно разместить на прицепе (хотя это затрудняет парковку автомобиля), в багажнике автомобиля (занимает почти все багажное отделение) или на платформе в передней или задней части автомобиля (наиболее популярный вариант в Европе).

Газогенераторный автомобиль Юха Сипиля

На американских пикапах, генератор помещается в кузове. Во время Второй мировой войны, некоторые автомобили были оснащены встроенным генератором, полностью скрытым от глаз.

Топливо для газогенератора

Дейв Николс (Dave Nichols) показывает топливо для газогенераторных автомобилей - древесина и щепа

Топливо для газогенераторных автомобилей состоит из древесины или щепы (фото слева). Древесный уголь также может быть использован, но это приводит к потере до 50 процентов энергии, содержащейся в оригинальной биомассе. С другой стороны, уголь содержит больше энергии за счет более высокой калорийности, так что спектр топлив может быть разнообразен. В принципе, любой органический материал может быть использован. Во время Второй мировой войны, уголь и торф использовались, но лес был основным видом топлива.


Один из наиболее удачных газогенераторных автомобилей был построен в 2008 году голландцем Джоном. Многие автомобили, оборудованные газогенераторами, имели громоздкую конструкцию и не очень привлекательный вид. Голландская Volvo 240, укомплектована современной газогенераторной системой из нержавеющей стали, и имеет современный элегантный вид.

Голландская Volvo 240 имеет современный элегантный вид.

“Получить древесный газ не так уж трудно”, говорит Джон, намного труднее получить чистый древесный газ. У Джона есть много нареканий на автомобильные газогенераторные установки, так как производимый ими газ содержит много примесей.

Джон из Голландии твердо уверен, что газогенераторные установки вырабатывающие древесный газ намного перспективнее использовать стационарно, например, для отопления помещения и для бытовых нужд, для производства электроэнергии, и для подобных производств. Газогенераторный автомобиль Volvo 240 рассчитан прежде всего для демонстрации возможностей газогенераторной технологии.

Возле автомобиля Джона и возле подобных газогенераторных автомобилей всегда собирается много восхищенного и заинтересованного народа. Тем не менее автомобильные газогенераторные установки для идеалистов и на время кризиса – считает Джон.

Технические возможности


Газогенераторная Volvo 240 достигает максимальной скорости 120 километров в час (75 миль / ч) и может поддерживать крейсерскую скорость 110 км / ч (68 миль / ч). “Топливный бак” может содержать 30 кг (66 фунтов) древесины, этого достаточно для примерно 100 километров пробега (62 миль), что сравнимо с электромобилем.

Если заднее сидение загрузить мешками с древесиной, то дальность пробега увеличивается до 400 километров (250 миль). Опять же, это сравнимо с электромобилем, если пространство для пассажира приносится в жертву для установки дополнительных батарей, как в случае с Tesla Roadster или электромобилем Mini Cooper. (В газогенераторе дополнительно ко всему, периодически нужно брать мешок с древесиной из заднего сидения и высыпать в бак).

Прицепной газогенератор

Тойота Camry 2,0 GLI на древесном газу

Существует принципиально другой подход к переоборудованию автомобилей газогенераторными системами.


о способ размещения газгена на прицепе. Такой подход избрал Веса Микконен. Последняя его работа – это газогенераторный Lincoln Continental 1979 Mark V, большой тяжелый американский автомобиль класса купе. Lincoln потребляет 50 кг (110 фунтов) древесины на каждые 100 километров пробега(62 миль) и является значительно менее экономным, чем Volvo Джона. Вес Микконен также переоборудовал Toyota Camry, более экономичный автомобиль. Этот автомобиль потребляет всего 20 кг (44 фунтов) древесины при таком же пробеге. Однако прицеп остался почти таким же большим, как и сам автомобиль.

Оптимизация электромобилей может происходить за счет уменьшения размеров и облегчения общего веса. С двоюродными братьями газогенераторными автомобилями такой способ не подходит. Хотя со времен Второй мировой войны газогенераторные автомобили стали намного совершеннее. Автомобили военных времен могли проезжать 20 – 50 километров на одной заправке, имели низкие динамические и скоростные характеристики.

«Передвигаться по миру при помощи пилы и топора», – под таким девизом голландец Джост Конин (Joost Conijn) на своем газогенераторном автомобиле с прицепом, совершил двухмесячное путешествие по Европе, абсолютно не беспокоясь о заправочных станциях (которых он не видел в Румынии). «Передвигаться по миру при помощи пилы и топора», -.  
<div id=


са дров, благодаря чему увеличивалось расстояние между «заправками». Интересно то, что Джост использовал древесину не только в качестве топлива автомобиля, но и как строительный материал для самого автомобиля.

Продолжение обзора

— sintezgaz.org.ua —

Источник: www.altsyn.com

Работа газогенераторной установки

Работа газогенераторной установки заключалась в превращении твёрдого топлива в газ, который и поступал в цилиндры. Наиболее оптимальным видом топлива  для рассматриваемой техники, из древесных топлив являлись дуб и берёза. Лучшим угольным топливом был бурый уголь, как менее гигроскопичный, и дававший большой выход газа.

Типовая газогенераторная установка автомобиля ЗИС-21 показана на рисунке ниже. Она состояла из собственно газогенератора 1, очистителя-охладителя 5, тонкого очистителя 4, смесителя 2, и электровентилятора 3.


Схема газогенераторной установки автомобиля ЗИС-21

В верхнюю часть газогенератора, бункер, загружалось подготовленное топливо, (мелкие древесные чурки, щепа, мелкий уголь). Под бункером располагался топливник, где происходило сгорание топлива. По мере  сгорания осуществлялась «автоматическая подача» нового топлива под действием его  собственного веса. Газогенератор устанавливался по левому борту грузовика.

В топливнике происходило образование окиси углерода при просасывании воздуха через горящее топливо. Это просасывание, принудительная тяга, обеспечивалась либо за счёт разрежения в цилиндрах работающего двигателя, либо при подготовке генератора к работе и запуску мотора – электровентилятором. Могла быть и естественная тяга, как у обычной печи, но в этом случае растапливание установки и подготовка машины к движению занимали до часа времени.

Ниже топливника, как и в обычной печке, помещался зольник для отходов сгорания, который каждые 70-100 км. пути нужно было чистить. Но кроме, как шофёру такой машины, это больше никому неудобств не доставляло. На дорогах, где работали «паровозы на резиновом ходу», интенсивность движения была раз в час по обещанию, запретов на съезд на обочину везде и всюду, как сейчас,  умные гаишники той эпохи ещё не устанавливали, а блюстители экологии тогда ещё и не родились.

Газ из топливника поступал в рубашку, окружавшую бункер, чем обеспечивался подогрев топлива в бункере, для его просушки. При выходе из генератора, газ имел достаточно высокую температуру, 110-140 градусов, поэтому проходил через секции радиатора, не только снижая температуру, но и очищаясь там же от тяжёлых механических примесей. Не забудем, что засасываемый буквально из-под колёс наружний воздух, не имел на своём пути никаких фильтров. Кроме того, и при сгорании происходит унос мелких частиц не сгоревшего топлива.

Как происходила очистка? Секции очистителя-теплообменника имели внутренние перфорированные трубы, наподобие  устройства обычных глушителей выхлопных систем. Горячий газ расширяясь терял скорость течения, проходя через лабиринты ещё больше тормозился, а примеси отсеивались и оставались на внутренних поверхностях наружных труб теплообменников.  Далее газ очищался в так называемом тонком очистителе, («колонна» по правому борту автомобиля), имевшем две последовательные ступени очистки, и работавшем по принципу обычного «сухого» воздушного фильтра карбюратора.

В смесителе, выполнявшем обязанности карбюратора, готовилась газо-воздушная смесь, которая  и  поступала в цилиндры.

Классификация газогенераторов

Газогенераторы классифицировались по процессу газификации, по методу подвода воздуха для горения топлива и по виду применяемого топлива.

По процессу газификации имелось разделение на работу прямым, обратным, и горизонтальным процессами. При прямом процессе воздух под действием разрежения проходил снизу вверх, как у обычной печи, и образовывал газовое топливо. Едва ли нынешнему читателю могут быть интересны химические формулы – «выкладки» процесса газификации, которые обязательно давались в технической литературе по таким установкам. Поэтому мы и не будем навеивать ему воспоминания, про «школьные годы чудесные» с уроками химии.

У генераторов прямого процесса существовал серьёзный недостаток. В подготовленном газовом топливе присутствовали пары смол, которые, попадая в цилиндры, «забивали» поршни, кольца, клапаны… Дальше думаем, можно не продолжать.

Схемы газогенераторов

Газогенераторы с обратным процессом существенно уменьшали недостаток устройств, описанных выше. Здесь наружный воздух поступал сразу в зону горения, а затем, за счёт разрежения, опускался вниз. И образовывавшиеся при перегонке смолы сгорали, или разлагались, образуя горючие газы.

Создание газогенераторов с горизонтальным процессом имело целью снижения высоты установок и центров тяжести порожних машин. Подобные установки были бы актуальны в первую очередь для легковых автомобилей.  Но они обладали вышеназванными недостатками генераторов прямого процесса, а потому на грузовиках ЗИС и ГАЗ применения не нашли.

Схема газогенератора

По методу подвода воздуха в газогенераторы, думается никого из нынешних читателей такие тонкости — подробности не интересуют. На знание общего устройства и принципов работы газогенераторных установок, отсутствие такой несущественной дополнительной информации не повлияет. Отметим лишь тот достаточно очевидный факт, что в зависимости от мест и направлений  подвода воздуха, добивались разных температур горения топлива. А это в свою очередь влекло за собой применение специальных жаропрочных сталей, а то и дополнительного охлаждения водой от штатных систем охлаждения моторов.

По виду применявшегося топлива автомобильные газогенераторы подразделялись на три вида. В установках для древесного топлива, использовалось дерево в разных видах – мелкие наколотые поленья, щепа. В угольных газогенераторах применялись древесный, бурый, каменный уголь и антрацит. Торфяные установки предназначались только для торфа в кусках или брикетах.

Приведённые ниже чертежи устройств подтверждают то, что установки изготавливались в зависимости от температур горения, характеристик процессов, и интенсивности золо — и шлакообразования. А также и то, что для  эксплуатации на непредназначенных для них видах топлива, они могли быть малопригодны, если не вообще непригодны.

Газогенератор для торфаГазогенератор для бурого угля

Выработанный  газ нужно было охлаждать ещё и для того, чтобы улучшать наполнение цилиндров, и тем самым избегать лишней потери мощности моторов. Охладители, (по терминологии того времени), газа были известны двух основных типов, трубчатые и радиаторные. Трубчатые охладители применялись на ЗИС-21, а так же и машинах  ГАЗ-42, выпускавшихся до 1944 года. Такие охладители работали на принципе конвекции, а потому были достаточно объёмными, и вынуждено крепились к раме под кузовом.

Расположение газогенераторной установки на ГАЗ-42

Радиаторные охладители значительно более эффективные, лёгкие и компактные. Они устанавливались перед обычными радиаторами систем охлаждения, и не только обдувались набегающим встречным потоком воздуха, но и «просасывались» вентилятором. В активе таких теплообменников ещё и то преимущество, что значительно уменьшалась общая длинна всех трубопроводов установки, снижалось их сопротивление проходу газа, и несколько повышалась мощность моторов за счёт улучшения наполнения цилиндров.

Жидкостной газоочиститель автомобиля ГАЗ-42

Выше уже было некоторое упоминание об очистке газа, когда рассматривалось общее устройство газогенераторной установки. Но сейчас нужно вернуться к этому несколько подробнее.

Известны три разновидности газовых очистителей —  динамические, поверхностные и жидкостные. Динамическими (инерционными) очистителями на советских грузовиках, являлись уже упоминавшиеся очистители-охладители первой ступени. Поверхностными очистителями являлись упомянутые уже «колонны» по правому борту, имевшие свои, две последовательные ступени более тонкой очистки. Однако на машинах ГАЗ-42, с 1944 года нашли применение жидкостные радиаторные очистители – охладители. Исчезли «колонны» по правому борту и большие подкузовные секции охладителей.

Суть этих нововведений в следующем. Газ имел две последовательные ступени охлаждения и очистки. При каждой ступени он проходил через соты воздушного охлаждения, а потом через слой воды, являвшийся и фильтром, и непосредственным дополнительным контактным охладителем. После чего и поступал в смеситель.

Смесители газогенераторных установок

Смесители газогенераторных установок по своему принципу действия были прямыми аналогами обычных бензиновых карбюраторов, но значительно проще по устройству и безотказнее в работе. Ибо не имели забивающихся жиклёров и тонких каналов регулировки холостого хода, негерметичных топливных клапанов и поплавков. Не требовалась и их регулировка в «карбюраторном» понимании, ни уровня в поплавковой камере, ни винтами качества и токсичности. Конечно, были регулировки приводов воздушных и дроссельных заслонок. Но возможные ошибки при таких регулировках, ни к экономичности, ни к экологии, никакого  отношения не имели.

Смесители служили для приготовления газо-воздушной смеси на всех режимах работы двигателя. Поскольку они, в отличие от карбюраторов, не имели, разумеется,  никаких ускорительных насосов, то и динамика разгона у газогенераторного ЗИСа или «газона», едва ли была намного лучше, чем у паровоза. Тем более, и с учётом вышеупомянутой потерей мощности, в сравнении с бензиновыми моторами. Но от этих машин в первую очередь требовалась-то  возможность работы на «подножном корму». А «гонки по вертикали» в Сталинскую эпоху были не приняты ещё и среди шофёров легковых машин.

Газовые смесители не вытеснили карбюраторов на одних и тех же машинах, а потому допускали работу одного и того же мотора и от газогенератора, и на бензине. Однако продолжительная работа таких машин на жидком топливе не практиковалась. Связано это было с тем, что низкокалорийное газовое топливо требовало повышенной степени сжатия, а в  ту эпоху, широко применявшиеся сорта бензинов при степени сжатия газогенераторных моторов, нередко вызывали детонацию. Поэтому работа на бензине использовалась либо при маневрировании на территории автохозяйств, либо как вспомогательная, для создания разрежения в цилиндрах и тяги при розжиге газогенератора. И, как понимает читатель, у газогенераторных грузовиков были две педали акселератора – газовая и бензиновая.

Газовые смесители условно разделялись на три группы:

Смеситель с параллельными потоками газа и воздуха применялся на автомобиле ЗИС-21. У верхнего фланца была расположена дроссельная заслонка, (смеситель, как и карбюраторы на моторе ЗИС-5 крепился под впускным коллектором), регулирующая количество газо-воздушной смеси. Воздушная заслонка бокового патрубка регулировала состав этой смеси, изменяя подачу свежего воздуха. Генераторный газ поступал через нижний патрубок, и смешиваясь с воздухом над воздушным патрубком, (место слияния потоков показано стрелками), поступал в цилиндры.

Схема параллельно-поточного смесителя ЗИС-21

Вихревой смеситель автомобиля ГАЗ-42

Вторая разновидность смесителей – вихревые устройства, применялись на моторах грузовиков ГАЗ-42. Воздух поступал через патрубок 4. При входе в смеситель, он получал вращательное движение, и перемешивался с газом, поступавшем через патрубок3. Качественный состав смеси регулировался заслонкой 1, а количество смеси, подаваемой в цилиндры, — дроссельной заслонкой 2.

Бытовали и смесители с пересекающимися потоками, (как у газогенераторов НАТИ Г-71). Они представляли собой тройник, схема которого   «в связке» с карбюратором, наглядно показана на рисунке ниже. Думаем, что читатель сможет самостоятельно провести аналогию назначения заслонок на предложенной схеме. Дроссельная заслонка 1 карбюратора могла использоваться лишь при розжиге генератора.

Смеситель с пересекающимися потоками воздуха и газа

Пуск двигателя сразу на газе возможен был лишь в том случае, если нормально протекал процесс газификации топлива, обеспечивая подачу газа хорошего качества. А для этого нужно было создать хорошую тягу, обеспечивавшую надлежащие условия для газификации.

При розжиге генератора, как уже было сказано выше, использовалась естественная или принудительная тяга. Для естественной тяги открывали загрузочный люк бункера, и люк зольника, обеспечивая вертикальную тягу, как у самовара. После этого производили растопку, как и у обычной печи. Далее последовательно закрывали сначала зольник, а потом и загрузочный люк бункера. Недостатком розжига естественной тягой, являлась его длительность и загрязнение воздуха печным газом. Достоинством являлось то, что газ имел температуру, близкую к оптимальной, и содержал в себе минимальное количество смол.

Принудительная тяга создавалась разряжением в цилиндрах двигателя, или электровентилятором. С помощью вентиляторов, в частности и запускались газогенераторы машин ЗИС и ГАЗ, при необходимости подготовки их к работе в кратчайший срок. При работе вентилятора, дроссельные заслонки карбюратора и смесителя были закрыты, а газ отводился через «гусь» выпускной трубы вентилятора. «Улитка» вентилятора имела заслонку, отсоединявшую его от газопровода после запуска мотора. Отсасывания газов при розжиге генератора разряжением в цилиндрах двигателя проводилось лишь в крайнем случае, при неисправности вентилятора или невозможности его длительной работы при плохо заряженной АКБ, когда требовался скорейший запуск генератора в работу.

Поскольку при таком способе, когда нормальный процесс газификации ещё не установился, неизбежными были попадания большого количества золы и смол в цилиндры. Карбюраторы включались во впускную систему двигателя параллельно со смесителями, или последовательно. Но второй способ большого распространения не получил, поскольку патрубки и диффузоры бензинового прибора питания, оказывали лишнее сопротивление проходу газо-воздушной смеси в цилиндры. А лучшие результаты дало последовательное включение специального автоматического (!) пускового устройства, уменьшавшего подачу бензина во впускной трубопровод, по мере перехода на газ.

Схема включения пускового приспособления

Для пуска двигателя на бензине, закрывалась газовая заслонка 7, воздушная 6 и дроссельная заслонка 5. Посредством дистанционного привода из кабины, поворачивался рычаг 2, открывался топливный кран 1, и поворачивалась шайба 4. Под действием разряжения в цилиндрах, автоматически открывался клапан 3. Бензин подавался через жиклёр 9, кран 1 и клапан 3, и смешиваясь с воздухом, поступавшим через жиклёр 8, проходил через отверстие в шайбе 4 в задроссельное пространство и в цилиндры. Далее, по мере открытия дроссельной заслонки 5, и уменьшения разряжения во впускном коллекторе, клапан 3 закрывался, и прекращал подачу жидкого топлива. Такая система значительно упрощала перевод работы мотора с бензина на газ. Однако, в этом случае, движение автомобиля на бензине, даже в крайне необходимых случаях вряд ли было возможным.

При переводе обычного карбюраторного двигателя на питание генераторным газом, его мощность снижалась на 35-40%. Это вызывалось низкой теплотворной способностью газогенераторного топлива, высокой температурой газо-воздушной смеси, исключавшей хорошее наполнение цилиндров, и значительным сопротивлением проходу газа по всем трубопроводам специальной установки. А потому, приспосабливание бензинового мотора для работы на газе, сводилось к следующим мерам:

  1. Увеличивалась степень сжатия, так как газ в этом случае допускал работу без детонации.
  2. Увеличивались углы опережения зажигания, так как газо-воздушная смесь горит медленнее бензиново-воздушной смеси.
  3. Уменьшались зазоры между электродами свечей с 0,6-0,8 до 0,3-0,4 мм, так как при увеличении степени сжатия, увеличивалось и сопротивление искровому разряду. Однако напомним читателям, что вновь вернулись к первым названым параметрам более современных бензиновых моторов лишь тогда, когда было повышено напряжение в бортовой сети с 6 до 12 вольт, и появились другие катушки зажигания.
  4. Увеличение степени сжатия потребовало более мощных стартёров, а те, в свою очередь — АКБ повышенной ёмкости.

А перечисленное в пунктах 1,2,3, думаем, даёт ясное понимание того, почему на таких машинах бензин, для обычного движения, был газу не ровня. Однако, просим не путать смену режимов «газ/бензин» у газобаллонных автомобилей. Эта ария  уже из другой оперы.

Главным недостатком газогенераторных установок с позиций того времени явились больший вес и объём возимого топлива. Ибо 1 литр бензина был эквивалентен 3 кг. древесных чурок или 1,7 – 2 кг древесного угля.

Мы имеем возможность предложить для сравнения и специфические характеристики газогенераторных машин ЗИС-21 и ГАЗ-42

Автомобиль  ЗИС-21:  грузоподъёмность 2, 5 т, макс. скорость 45 км/ч

При степени сжатия 7,0, двигатель развивал 45 л.с. при 2400 об./мин. и крутящий момент 20 кгм при 900-1100 об./мин. Газогенераторная установка обратного процесса газификации, рассчитанная на древесные чурки.  Возимый запас/расход топлива – 100 кг. Максимальный запас хода по топливу на шоссе -95 км. Имелась разновидность машины ЗИС-Г69 для работы на древесных чурках, торфе, с расходом 120 кг./100 км., и на буром угле, 150 кг./100 км.

Бензобак в моторном отсеке с подачей самотёком. Главная передача от автобуса ЗИС-16, с числом 7,67. Электрооборудование 12 вольт, АКБ  6СТ-144, 2 шт. генератор  автобусный, от ЗИС-8, мод.ГА-27, 20А. 250 вт., стартер автобусный МАФ-31, мощностью 1,5 л.с. Кстати, из упомянутой ниже книги следует, что все газогенераторные машины ЗИС имели зажигание от магнето, автономного источника импульсов высокого напряжения, заменявшего собой катушку зажигания и прерыватель-распределитель.

Автомобиль ГАЗ-42: грузоподъёмность 1,2 т., макс. скорость 50 км/ч

При степени сжатия 6,5, мощность составляла 30 л.с. при 2400 об/мин. и крутящий момент 11 кгм при 1200 об/мин.

Газогенераторная установка обратного процесса газификации, для древесных чурок. Имелась разновидность машины ГАЗ-Г59У, для работы на древесных чурках, торфе, и буром угле. Расход топлива на 100 км – 60 кг. древесных чурок для ГАЗ-42 и ГАЗ-Г59У, 75 кг. торфа, или 60-90 кг бурого угля, для последней разновидности машины.

Главная передача с числом 7,50. Электрооборудование 6 вольт, АКБ 3СТ-112

ТТХ газогенераторных автомобилей даны по книге «Эксплуатационно-технические характеристики автомобилей», Издательство Минкомхоза РСФСР, 1954 г.

Заключение

Что сказать в заключение? Проведена самая отдалённая, пусть даже косвенная аналогия между газогенераторным грузовиком и паровозом. Ведь автомобильный двигатель внутреннего сгорания, и паровая машина локомотива – это близкие разновидности кинематически одинаковых тепловых двигателей. Ибо в обеих случаях возвратно-поступательные движения поршней, служат одной и той же конечной цели – вращательному — на ведущие колёса, — переключением пар шестерён в КПП грузовика, или  изменением времени отсечки, (степени наполнения паром цилиндров машины), — для данного случая работы силовых установок, думаем не принципиально.

Работа же шофёра газогенераторной машины, отчасти была схожа с работой паровозной бригады из трёх человек. Обязанности по управлению и обслуживанию паровоза в поездке, делились между машинистом, (управление движением и обзор пути с правого «крыла»), его помошником, (отопление паровоза и обзор пути с левого «крыла»), и кочегаром, (подача топлива из тендера в будку, подмена при необходимости помошника на отоплении и вспомогательные обязанности). В случаях же плановых или вынужденных остановок поезда, обслуживание — манипуляции маслёнками, нагнетателями и гаечными ключами, делилось между паровозниками поровну, не взирая на «табели о рангах».  А шофёр газогенератора, один был, по поговорке, «И швец, и жнец, и на дуде игрец». И управление автомобилем, и загрузка бункера, и «шуровка» топки, и очистка зольника, а если надо, — то и заготовка в пути недостающего топлива…  Шофёрам обычных бензиновых ЗИС-5 или ГАЗ-51, такое, наверное, и в страшных снах не снилось.

Возможно, шофёрам газогенераторных машин и полагались надбавки при оплате труда за совмещение обязанностей, — и за «помошника машиниста», и за «кочегара».  Но были ли они в действительности – мы утверждать не можем. А что наиболее достоверно, так то, что привилегией этих водителей была почти постоянная работа на природе, вдали от шума городского…

Эксплуатация газогенераторных машин ЗИС и ГАЗ давно уже стала достоянием истории. Как постепенно уходят в прошлое и карбюраторные системы питания – более простые, надёжные, дешёвые и ремонтопригодные, в сравнении с «электронно-инжекторными наворотами». Но какой суммарный грузооборот имели все газогенераторные грузовики за почти три десятилетия их эксплуатации – не подсчитать уже никому…

 

Источник: TrucksReview.ru

Книга которой 60 лет- конечно еще не раритет- у меня есть несколько изданий куда более ранних- но "Устройство автомобилей" В.И. Анохина- (1954г) примечательна тем, что содержит информацию не только о всем известных советских мегамоделях 30-40 х гг., а и о напрочь забытых сейчас машинах- забытых технических решениях, впрочем, отвечавших духу своего непростого времени.

Речь пойдет о машинах, которым для движения не требовались ни бензин, ни дизтопливо, ни пропан или метан, ни уж тем более электротяга- ничего подобного.
Описанные в книге модификации советских грузовиков употребляли в пищу твердотопливные элементы- древесный брикет, "чурочку" по-тогдашнему, или проще говоря- дрова.
Ничего сверхъестественного- в конструкцию грузовика (да и не только грузовика) вживляли компактный газогенераторный котел,

а в шоферское сознание- то факт, что топливо его газона или захара теперь-не вонючая жидкость, а ароматные, похрустывающие в мешках деревяшки.

Принцип работы теоретически прост как пареная репа- жар от горящих дров катализирует восстановление углекислоты- продукта сгорания тех же дров, проходящей через разогретые в бедной кислородом среде опять же дрова, до горючего угарного газа.

Расцвет работ над газогенераторными автомобилями в СССР пришелся на начало- середину 30-х годов. Сталинские темпы индустриализации порождали дефицит нефти, а возможно, дальновидные партия и правительство за 10 лет до битв за Сталинград и Кавказ видели нерадужную перспективу захвата врагами важнейших сырьевых районов и водных путей. Как бы то ни было, постановили- стратегическому проекту "автомобиль на дровах"- быть!

Процесс пошел. "Дровяные" газогенераторы разрабатывали в ЦНИИМЭ и НАТИ (тот что стал НАМИ), позже ЦНИИАТе, на ГАЗе и ЗИСе, и даже в ЛТА- Лесотехнической академии им. Кирова в Ленинграде.

Сначала ими дооборудовали обычные бензиновые грузовики, а позже авто на дровах начали сходить с конвейеров Москвы и Горького. В 1936 г начал серийно выпускаться ЗИС 13 (шасcи ЗИС-11), который сменился в 1938 г более надежным ЗИС-21 (база ЗИС-5). В 1939-м свет увидел самый массовый советский газген- ГАЗ 42 на шасси всем известной горьковской полуторки.

Советские шофера восприняли новую технику подобающим образом- даже им, действительно суровым мужикам, знающим не понаслышке кривой стартер, магнето и баббит в коренных, у которых шиномонтаж ассоциировался не с переобувкой на сервисе 2 раза в год, а с монтировкой, гаечным ключом и баллоном день через день- даже им, тогдашним, запуск, да и сама эксплуатация газгенов давались не просто.
Судите сами. "Холодный" запуск двигателя даже в летнее время растягивался практически на час- и по сути являл собою целый процесс на несколько десятков шагов. Ведь нужно было:
1. Подключить и проверить батарею.
2. Перекрыть воздушную и топливную заслонки.
3. Открыть заслонку пускового вентилятора.
4. Взять лом, открыть верхний люк бункера и прошуровать то, что не догорело в прошлый раз.

5. Залезть в кузов, захватив с собой пару мешков чурочки, и, в открытый верхний люк засыпать топливо- да не полный бункер, а для начала меньше половины, дабы побыстрее оно там разгорелось.
6. Слезть с кузова, зажечь керосиновый факел, открыть нижнюю футорку.
7. Запустить пусковой электровентилятор.
8. Вставить факел в футорку газогенератора- и минуту- полторы таким образом поджигать деревяшки.

9. Достать факел и проверить через обратный клапан и футорку, пошел ли процесс.

10. Если разгорелось- подождать минут 5-10 (летом) пока газогенератор наберет нужную температуру.
11. Проверить качество генерируемого газа- зажечь спичку и поднести к концу отводной трубы вентилятора- газ должен быть практически бесцветным, а пламя- ровного синеватого цвета, как на плите.

12. если все ОК, лезть в кабину, зыкрывать заслонку вентилятора, а потом его выключить (ни в коем случае не наоборот).
13. оставив прикрытой воздушную заслонку, продуть нажатием педали акселератора цилиндры, и, включив зажигание, приступить уже непосредственно к пуску двигателя.
Чувствуете закалку водителя тех времен? И это в основном были всего лишь тыловики- на фронт такую технику как правило не допускали. Для победы гнали бензин и солярку (все для фронта!)- на переднем крае какая может быть экономия и дрова…
Помимо маразматического, сравнимого с запуском котлов парового крейсера, процесса старта, газгены отличались крайне капризной работой, особенно зимой (кто ездил на авто с самыми древними установками под пропан- тот поймет).
Практически каждый день нужно было чистить зольники, очистители и охладители.
Нужно было постоянно следить за герметичностью всех соединений, а также конденсатом- чтобы не допустить перемерзания труб.
Что и говорить о взрыво- и пожаропасности газогенераторов?
Впечатлял и расход: на ЗИСах к примеру- до 70-80 кг чурки на 100км (два здоровенных мешка).

Но как бы выглядел шоферской разговор тех лет:
— У тебя много ГАЗон жрет?
— Да нет, всего мешок дровишек на сто верст сгорает. Вон у Семенова Захар тот ого-го- два мешка ему подавай- только успевай сыпать!

И, наконец, стоит отметить также еще два очень немаловажных "минуса" таких систем:
— падение мощности в связи с низкой теплотворностью сгенерированного из дровишек газа (по факту- ГАЗ -42 — 30 л.с., прародитель ГАЗ ММ- 50 л.с., т.е. — 40%);
— снижение грузоподъемности за счет перевозки "по умолчанию" газогенераторной установки (по факту- ЗИС- 21- 2500 кг, базовый "Захар" — 3000 кг)
Как бы то ни было, эта техника выпускалась и работала- долгие годы и даже десятилетия, "воевала" в тылу всю Великую Отечественную, делая свой маломощный и тихоходный, но от этого не менее важный вклад в общую победу.
Согласно Л.М. Шугурову (а это уже совсем другая книга), всего было выпущено основных моделей:
ГАЗ 42 (1939-1946)-33840 ед,
ЗИС- 21 (1938- 1946)- 15445 ед
ЗИС- 13 (1936-1938) -900 ед.
Это не считая послевоенных УралЗИСов (выпускались аж до 1956 г), легковых и автобусных модификаций.
Как бы то ни было, после войны жизнь становилась лучше, а жить соответственно веселей, народное хозяйство восстановилось ударными темпами, нефть потекла рекой в мирное русло и при розничной стоимости бензина в дореформенные 50 коп/л, авто на газогенераторной тяге стали выглядеть мягко говоря неэффективно.

Выпуск самых "популярных" моделей как вы успели заметить, свернули еще в 1946, а через 10 лет производство таких авто совсем сошло на нет.
Народному хозяйству требовались не слабенькие пофыркивающие газгены, но мощные надежные грузовики новых конструкций- в 1953 г на ЗИСе началась разработка принципиально новой модели, ставшей впоследствии знаменитым 130-м ЗИЛом, в 1957- на МАЗе взялись за 500-ю модель, а в1961-м свет увидел самый массовый советский грузовик ГАЗ 53.
Но об этих машинах в книге Анохина, конечно же, ничего не писалось.

Спасибо за внимание и быть добру.

Источник: www.drive2.ru

Типы газогенераторов

Для разных видов топлива были разработаны газогенераторы соответствующих типов:
— газогенераторы прямого процесса газификации;
— газогенераторы обращенного (обратного, или «опрокинутого») процесса газификации;
— газогенераторы поперечного (горизонтального) процесса газификации.

 

Газогенераторы прямого процесса газификации

Основным преимуществом газогенераторов прямого процесса являлась возможность газифицировать небитуминозные многозольные сорта твердого топлива – полукокс и антрацит.

Схема газогенератора прямого процесса газификации

В газогенераторах прямого процесса подача воздуха обычно осуществлялась через колосниковую решетку снизу, а газ отбирался сверху. Непосредственно над решеткой располагалась зона горения. За счет выделяемого при горении тепла температура в зоне достигала 1300 – 1700 С.

Над зоной горения, занимавшей лишь 30 – 50 мм высоты слоя топлива, находилась зона восстановления. Так как восстановительные реакции протекают с поглощением тепла, то температура в зоне восстановления снижалась до 700 – 900 С.

Выше активное зоны находились зона сухой перегонки и зона подсушки топлива. Эти зоны обогревались теплом, выделяемым в активной зоне, а также теплом проходящих газов в том случае, если газоотборный патрубок располагался в верхней части генератора. Обычно газоотборный патрубок располагали на высоте, позволяющей отвести газ непосредственно на его выходе из активной зоны. Температура в зоне сухой перегонки составляла 150 – 450 С, а в зоне подсушки 100 – 150 С.

В газогенераторах прямого процесса влага топлива не попадала в зону горения, поэтому воду в эту зону подводили специально, путем предварительного испарения и смешивания с поступающим в газогенератор воздухом. Водяные пары, реагируя с углеродом топлива, обогащали генераторный газ образующимся водородом, что повышало мощность двигателя.

 

Газогенераторы обращенного (опрокинутого) процесса газификации.

Газогенераторы обращенного процесса были предназначены для газификации битуминозных (смолистых) сортов твердого топлива – древесных чурок и древесного угля.

Схема газогенератора обращенного (опрокинутого) процесса газификации

В генераторах этого типа воздух подавался в среднюю по их высоте часть, в которой и происходил процесс горения. Отбор образовавшихся газов осуществлялся ниже подвода воздуха. Активная зона занимала часть газогенератора от места подвода воздуха до колосниковой решетки, ниже которой был расположен зольник с газоотборным патрубком.

Зоны сухой перегонки и подсушки располагались выше активной зоны, поэтому влага топлива и смолы не могли выйти из газогенератора, минуя активную зону. Проходя через зону с высокой температурой, продукты сухой перегонки подвергались разложению, в результате чего количество смол в выходящем из генератора газе было незначительным. Как правило, в газогенераторах обращенного процесса газификации горячий генераторный газ использовался для подогрева топлива в бункере. Благодаря этому улучшалась осадка топлива, так как устранялось прилипание покрытых смолой чурок к стенкам бункера и тем самым повышалась устойчивость работы генератора.

 

Газогенераторы поперечного (горизонтального) процесса газификации.

В газогенераторах поперечного процесса воздух с высокой скоростью дутья подводился через фурму, расположенную сбоку в нижней части. Отбор газа осуществлялся через газоотборную решетку, расположенную напротив фурмы, со стороны газоотборного патрубка. Активная зона была сосредоточена на небольшом пространстве между концом формы и газоотборной решеткой. Над ней располагалась зона сухой перегонки и выше – зона подсушки топлива.

Схема газогенератора поперечного (горизонтального) процесса газификации

Отличительной особенностью газогенератора этого типа являлась локализация очага горения в небольшом объеме и ведение процесса газификации при высокой температуре. Это обеспечивало газогенератору поперечного процесса хорошую приспособляемость к изменению режимов и снижает время пуска.

Этот газогенератор, так же как и газогенератор прямого процесса, был непригоден для газификации топлив с большим содержанием смол. Эти установки применяли для древесного угля, древесноугольных брикетов, торфяного кокса.

Наибольшее распространение получили газогенераторные установки обращенного процесса газификации, работавшие на древесных чурках.
Примером такого газогененератора может служить газогенератор устанавливавшийся на ГАЗ-42

газогенератор устанавливавшийся на ГАЗ-42

Газогенератор ГАЗ-42 состоял из цилиндрического корпуса 1, изготовленного из 2-миллиметровой листовой стали, загрузочного люка 2 и внутреннего бункера 3, к нижней части которого была приварена стальная цельнолитая камера газификации 8 с периферийным подводом воздуха (через фурмы).
Нижняя часть газогенератора служила зольником, который периодически очищался через зольниковый люк 7.

Воздух под действием разрежения, создаваемого двигателем, открывал обратный клапан 5 и через клапанную коробку 4, футорку 6, воздушный пояс и фурмы поступал в камеру газификации 8. Образующийся газ выходил из-под юбки камеры 8, поднимался вверх, проходил через кольцевое пространство между корпусом и внутренним бункером и отсасывался через газоотборный патрубок 10, расположенный в верхней части газогенератора.

Равномерный отбор газа по всей окружной поверхности газогенератора обеспечивался отражателем 9, приваренным к внутренней стенке корпуса 1 со стороны газоотборного патрубка 10.
Для более полного разложения смол, особенно при малых нагрузках газогенератора, в камере газификации было предусмотрено сужение – горловина. Помимо уменьшения смолы в газе, применение горловины одновременно приводило к обеднению газа горючими компонентами сухой перегонки.

На величину получаемой мощности влияла согласованность таких параметров конструкции газогенератора, как диаметр камеры газификации по фурменному поясу, проходное сечение фурм, диаметр горловины и высота активной зоны.

Газогенераторы обращенного процесса применяли и для газификации древесного угля. Вследствие большого количества углерода в древесном угле процесс протекал при высокой температуре, которая разрушительно действовала на детали камеры газификации.
Для повышения долговечности камер газогенераторов, работающих на древесном угле, применяли центральный подвод воздуха, снижавший воздействие высокой температуры на стенки камеры газификации.

Принцип работы автомобильной газогенераторной установки

Чтобы нормально эксплуатировать автомобиль на дровах, одного газогенератора недостаточно. Полученный газ необходимо очистить от вредных для двигателя примесей: смол и сажи. Поэтому была придумана система фильтрации, включающая три дополнительных ступени: фильтр грубой очистки – циклон; радиатор – охладитель; фильтр тонкой очистки.

Газогенераторная установка

В качестве простейшего фильтра грубой очистки использовался циклон.

Загрязненный газ попадая внутрь, движется по кругу на высокой скорости, за счет чего крупные и средние частицы золы отбрасываются на стенки центробежной силой и выводятся через отверстие в конусе.

Газогенераторная установка

Как пример — промышленный циклон использовавшийся на НАТИ-Г-78

циклон

Газ поступал в очиститель через патрубок 1, располагавшийся касательно к корпусу циклона. Вследствие этого газ получал вращательное движение и наиболее тяжелые частицы, содержащиеся в нем, отбрасывались центробежной силой к стенкам корпуса 3.

Ударившись о стенки, частицы падали в пылесборник 6.

Отражатель 4 препятствовал возвращению частиц в газовый поток.

Очищенный газ выходил из циклона через газоотборный патрубок 2.

Удаление осадка осуществлялось через люк 5.

На выходе из газогенератора газ имел высокую температуру.
Чтобы улучшить наполнение цилиндров «зарядом» топлива, газ требовалось охладить. Для этого газ пропускался через длинный трубопровод, соединявший газогенератор с фильтром тонкой очистки, или через охладитель радиаторного типа, который устанавливался перед водяным радиатором автомобиля.

охладитель

Охладитель радиаторного типа газогенераторной установки УралЗИС-2Г имел 16 трубок, расположенных вертикально в один ряд.

Для слива воды при промывке охладителя служили пробки в нижнем резервуаре.

Конденсат вытекал наружу через отверстия в пробках.

Два кронштейна, приваренные к нижнему резервуару, служили для крепления охладителя на поперечине рамы автомобиля.

Чаще всего в автомобильных газогенераторных установках применяли комбинированную систему инерционной очистки и охлаждения газа в грубых очистителях – охладителях. Осаждение крупных и средних частиц в таких очистителях осуществлялось путем изменения направления и скорости движения газа. При этом одновременно происходило охлаждение газа вследствие передачи тепла стенкам очистителя.

комбинированная система очистки

Фильтр тонкой очистки
Для тонкой очистки газа чаще всего применяли очистители с кольцами.

фильтр тонкой очистки газа

Очистители этого типа представляли собой цилиндрический резервуар, корпус 3 которого был разделен на три части двумя горизонтальными металлическими сетками 5, на которых ровным слоем лежали кольца 4, изготовленные из листовой стали.

Процесс охлаждения газа, начавшись в грубых очистителях – охладителях, продолжался и в фильтре тонкой очистки. Влага конденсировалась на поверхности колец и способствовала осаживанию на кольцах мелких частиц.

Газ входил в очиститель через нижнюю трубу 6, и пройдя два слоя колец, отсасывался через газоотборную трубу 1, соединенную со смесителем двигателя.
Для загрузки, выгрузки и промывки колец использовали люки на боковой поверхности корпуса.

Применялись конструкции, в которых в качестве фильтрующего материала использовалась вода или масло. Принцип работы водяных (барботажных) очистителей заключался в том, что газ в виде маленьких пузырьков проходил через слой воды и таким образом избавлялся от мелких частиц.

Вентилятор розжига

В автомобильных установках розжиг газогенератора осуществляется центробежным вентилятором с электрическим приводом. При работе вентилятор розжига продувал газ из газогенератора через всю систему очистки и охлаждения, поэтому вентилятор старались разместить ближе к смесителю двигателя, чтобы процессе розжига заполнить горючим газом весь газопровод.

Вентилятор розжига газогенераторной установки состоял из кожуха 1 и 2, в котором вращалась соединенная с валом электродвигателя крыльчатка 3. Кожух, отштампованный из листовой стали, одной из половин крепился к фланцу электродвигателя. К торцу другой половины был подведен газоприемный патрубок 4.

Вентилятор

 

Смеситель

Образование горючей смеси из генераторного газа и воздуха происходило в смесителе.

Смеситель

Простейший двухструйный смеситель а представлял собой тройник с пересекающимися потоками газа и воздуха.
Количество засасываемой в двигатель смеси регулировалось дроссельной заслонкой 1, а качество смеси – воздушной заслонкой 2, которая изменяла количество поступающего в смеситель воздуха.

Эжекционные смесители б) и в) различались по принципу подвода воздуха и газа. В первом случае газ в корпус смесителя 3 подводился через сопло 4, а воздух засасывался через кольцевой зазор вокруг сопла. Во втором случае в центр смесителя подавался воздух, а по периферии – газ.

Воздушная заслонка обычно была связана с рычагом, установленном на рулевой колонке автомобиля и регулировалась водителем вручную. Дроссельной заслонкой водитель управлял с помощью педали.

Источник: www.uazbuka.ru

Рекомендации по установке

Полуторка на дровахГазогенераторный двигатель на дровах для автомобиля может быть различных форм и размеров. Для этих показателей не существует каких-либо определенных требований. Однако необходимо учитывать, что прибор должен обязательно быть создан из металла толщиной не менее 3 мм. Где именно установить конструкцию, каждый автолюбитель решает самостоятельно.

При выборе месторасположения важно продумать не только размеры всего агрегата, теплообменника и фильтров, а также длину патрубков. Важно, чтобы загрузка партии топлива происходила через крышку сверху. Во время работы двигателя дозаправка осуществляется с незначительным выделением газа. Если ДВС заглушен, а в устройстве продолжает гореть масса, загрузка новой партии сопровождается появлением обильного облака.

Поместить подобное устройство можно только снаружи автомобиля и обязательно сзади. Это обусловлено тем, что к конструкции должен быть свободный доступ. Чем длиннее планируемые дистанции без дозаправки, тем больше размеры изделия. Составляющие элементы аппарата должны быть сделаны в соответствии с размерами бункера.

Полуторка на дровах

Газогенератор на грузовой машине можно разместить между кабиной и бортом с водительской стороны. Трубы, теплообменник и фильтрующий элемент разрешается размещать за кабиной. Фильтр тонкой очистки следует расположить на противоположной части кабины (за дверью пассажира). Для удобного удаления конденсата патрубки и дренажные краны выводят ниже фильтрующего элемента тонкой очистки.

На легковой машине аппарат рекомендуется устанавливать на открытой части. Для этого можно модифицировать багажник, приварить прицеп и т. д. Все зависит от вкусовых предпочтений и фантазий владельца. Не рекомендуется устанавливать оборудование в багажнике под крышкой, так как во время его эксплуатации в салон автомобиля будут попадать дым и угольная пыль.

Газогенератор — агрегат, с помощью которого получается горючий газ. После прогона последнего через очистительные фильтры и охлаждающий радиатор получается чистая и холодная газовая смесь. Оксид углерода может заменить классический вариант топлива, обеспечивая двигателю бесперебойную работу. Бензиновые ДВС функционируют с газогенераторным устройством без существенных потерь производительности.

Источник: oventilyacii.ru