Теплоотдача радиаторов отопления: таблица показателей основных видов


Алюминий- химический элемент

Удельная теплоемкость алюминия является одним из основных параметров, определяющих использование металла в технических целях для производства деталей, техники, конструкций.

Физические свойства металла


Алюминий — это химический элемент (атомный № 13) Он принадлежит к группе легких металлов и является распространенным элементом, находящимся в земной коре. Парамагнитный металл обладает серебристо-белым цветом, он очень легко поддается механической обработке, из него удобно отливать изделия.

Металл обладает высокой тепло- и электропроводностью. Он устойчив к воздействию воздуха за счет способности формирования пленок из оксида металла, защищающих поверхность от влияния внешней среды.

Разрушается пленка под воздействием щелочных растворов. Для предотвращения реакции металла с агрессивными жидкостями в сплав добавляют индий, олово или галлий.

Удельная теплота плавления составляет 390 кДж/кг, а испарения – 10,53 МДж/кг. Металл кипит при температуре 2500°C. Градиент плавления зависит от степени очистки материала и составляет соответственно:


  • для технического сырья +658°C;
  • для металла с очисткой высшего класса +660 °C.

Алюминий легко формирует сплавы, среди которых всем известны соединения с медью, магнием, кремнием. В ювелирной отрасли этот металл сочетают с золотом, что придает составу новые физические свойства.

Сплавы алюминия

В природе химический элемент образует естественные соединения. Он находится в составе таких минералов, как:

  • нефелин;
  • боксит;
  • корунд;
  • полевой шпат;
  • каолинит;
  • берилл;
  • изумруд;
  • хризоберилл.

В некоторых местах (жерла вулканов) можно обнаружить в незначительных количествах самородный металл.

Сферы применения

Свойство химического элемента № 13 отлично накапливать тепло позволяет его широко использовать в промышленном производстве и теплотехнике.


Радиатор

Алюминий применяется в качестве сырья для создания строительных конструкций. Он обладает легкостью, прочностью, устойчивость и является привлекательным сырьем для производства оконных конструкций.

Химический элемент образует неядовитые оксиды, что разрешает использование в производстве фольги для нужд пищевой промышленности. Алюминий является сырьем для создания космических ракет и самолетов. Высокий коэффициент отражения определяет его использование в изготовлении зеркал.

Теплопроводность металла и сплавов

Известен факт, что при средних и высоких температурных градиентах теплопроводность алюминия меньше, чем у железа или меди. Показатель теплопроводности алюминия определяет его использование для производства радиаторов.

Теплоемкость алюминия.

При охлаждении металла теплопроводность значительно возрастает по сравнению с медью, для которой при низкой температуре показатель становится ниже.

В процессе переплавки материал изменяет свойства: уменьшается его плотность и теплопроводность. Например, при температурном градиенте +27°C плотность равна 2697 кг/м³, при нагревании до температуры перехода в жидкое состояние она становится равной 2368 кг/м³. Этот факт обусловлен расширением массы при подогреве. Вследствие влияния температуры снижается плотность.

Удельная теплоемкость алюминия равна 904 Дж/кг при комнатной температуре. Этот показатель значительно зависит от температурного градиента, и в сравнении с медью и железом для этого материала он значительно выше.


Теплопроводность сплавов, содержащих химический элемент № 13, увеличивается с ростом температуры. Более низким температурным градиентом обладают литейные составы. Наиболее плотными являются соединения, в составе которых находятся кремний и цинк.

Сплавы, содержащие магний, отличаются легкостью. Соединения, в составе которых находится медь, обладают устойчивостью к коррозии и особой прочностью.

Чем больше весовое количество алюминия в составе соединения, тем выше показатель теплопроводности. Удельная теплоемкость сплавов увеличивается при нагревании.

Тепло — это одна из форм энергии, которая заключена в движении атомов в веществе. Энергию этого движения мы и измеряем термометром, хоть и не напрямую.
Как и все другие виды энергии, теплота может передаваться от тела к телу. Происходит это всегда, когда есть тела разной температуры. При этом им необязательно даже находиться в соприкосновении, так существует несколько способов передачи тепла. А именно:

Теплопроводность. Это передача тепла при непосредственном контакте двух тел.


ело может быть и одно, если его части разной температуры.) При этом чем больше разность температур тел и чем больше площадь их контакта — тем больше тепла передаётся каждую секунду. Помимо этого, количество передаваемого тепла зависит от материала — например, большинство металлов хорошо проводят тепло, а дерево и пластик — гораздо хуже. Величину, характеризующую эту способность передавать тепло, тоже называют теплопроводностью (более корректно – коэффициент теплопроводности), что может приводить к некоторой путанице.

Если необходимо измерить теплопроводность какого-либо материала, то обычно это проводят в следующем эксперименте: изготовляется стержень из интересующего материала и один его конец поддерживается при одной температуре, а другой — при отличной, например более низкой, температуре. Пусть, например, холодный  конец будет помещён в воду со льдом — таким образом будет поддерживаться постоянная температура, а измеряя скорость таяния льда можно судить о количестве полученного тепла. Деля количество тепла (а вернее — мощность) на разность температур и поперечное сечение стержня и умножая на его длину, получаем коэффициент теплопроводности, измеряющийся, как следует из  вышенаписанного, в Дж*м/К*м2*с, то есть в Вт/К*м. Ниже вы видите таблицу теплопроводности некоторых материалов.



Материал Теплопроводность, Вт/(м·K)
Алмаз 1001—2600
Серебро 430
Медь 401
Оксид бериллия 370
Золото 320
Алюминий 202—236
Кремний 150
Латунь 97—111
Хром 107
Железо 92
Платина 70
Олово 67
Оксид цинка 54
Сталь 47
Оксид алюминия 40
Кварц 8
Гранит 2,4
Бетон сплошной 1,75
Базальт 1,3
Стекло 1-1,15
Термопаста КПТ-8 0,7
Вода при нормальных условиях 0,6
Кирпич строительный 0,2—0,7
Древесина 0,15
Нефтяные масла 0,12
Свежий снег 0,10—0,15
Стекловата 0,032-0,041
Каменная вата 0,034-0,039
Воздух (300 K, 100 кПа) 0,022

Как видно, теплопроводность различается на много порядков. Удивительно хорошо проводят тепло алмаз и оксиды некоторых металлов (по сравнению с другими диэлектриками), плохо проводят тепло воздух, снег и термопаста КПТ-8.

Но мы привыкли считать, что воздух хорошо проводит тепло, а вата — нет, хотя она может на 99% состоять из воздуха.


ло в конвекции. Горячий воздух легче холодного, и «всплывает» наверх, порождая постоянную циркуляцию воздуха вокруг нагретого или сильно охлаждённого тела. Конвекция на порядок улучшает теплопередачу: при её отсутствии было бы очень затруднительно вскипятить кастрюлю воды, не перемешивая её постоянно. А в диапазоне от 0°С до 4°С вода при нагревании сжимается, что приводит к конвекции в противоположном от привычного направлении. Это приводит к тому, что независимо от температуры воздуха, на дне глубоких озёр температура всегда устанавливается равной 4°C

Для уменьшения теплоотдачи из пространства между стенками термосов откачивают воздух.  Но надо отметить, что теплопроводность воздуха мало зависит от давления вплоть до 0,01мм рт.ст, то есть границы глубокого вакуума. Этот феномен объясняется теорией газов.

Ещё один способ теплопередачи — это излучение. Все тела излучают энергию в виде электромагнитных волн, но только достаточно сильно нагретые (~600°С) излучают в видимом нами диапазоне. Мощность излучения даже при комнатной температуре достаточно большая — порядка 40мВт с 1см2. В пересчёте на площадь поверхности человеческого тела (~1м2) это составит 400Вт. Спасает лишь то, что в привычном нам окружении все тела вокруг также излучают с примерно той же мощностью. Мощность излучения, кстати, сильно зависит от температуры (как T4) , согласно закону Стефана-Больцмана. Расчёты показывают, что, например, при 0°С мощность теплового излучения примерно в полтора раза слабее, чем при 27°С.


В отличие от теплопроводности, излучение может распространяться в полном вакууме — именно благодаря нему живые организмы на Земле получают энергию Солнца. Если теплопередача излучением нежелательна, то её минимизируют, ставя непрозрачные перегородки между холодным и горячим объектами, либо уменьшают поглощение излучения (и испускание, кстати, в ровно той же степени), покрывая поверхность тонким зеркальным слоем металла, например, серебра.

  • Данные по теплопроводности взяты из Wikipedia, а туда они попали из справочников, таких, как:
  • «Физические величины» под ред.  И. С. Григорьева
  • CRC Handbook of Chemistry and Physics
  • Более строгое описание теплопроводности можно найти в учебнике по физике, например в «Общей физике» Д.В.Сивухина (Том 2). В 4 томе есть глава, посвящённая тепловому излучению (в т.ч. закону Стефана-Больцмана)

Основные характеристики современных отопительных радиаторов

Рынок теплового оборудования изобилует современными моделями, отличающимися форматом и теплоотдачей, которые выпускаются из разного металла:

  • алюминий;
  • медь (труба для теплоносителя) и алюминий (внешний кожух);
  • сталь и алюминий;
  • сталь;
  • чугун.

Чугунные батареи считаются «классикой» обогревательных приборов. Тяжелые громоздкие «гармошки» всем известны со времен советской эпохи. Они постепенно вытесняются новыми моделями в стиле ретро из того же чугуна. Покупатели все чаще отдают предпочтение более современным биметаллическим радиаторам.

Хотя чугун долго разогревается, такие батареи пользуются популярностью и завидным спросом потребителей. Новые модели чугунного радиатора типа МС 140 надежные, дешевые, стойкие к перепадам давления в системе, при условии надежного сочленения с трубами при монтаже. При отключении чугунные «гармошки» долго держат тепло, хотя прогреваются дольше других разновидностей. У новых разработок улучшенный дизайн, часто есть ножки для напольного монтажа. Сравнение тепловой инертности (темпов прогревания) и общих показателей представлено в таблице 1.

Таблица 1. 


Параметры / металл Чугун Сталь панельные Сталь трубчатые Биметалл Алюминий
Формат Секции Цельные Цельные Секции Секции
Тепловая инертность Высокая Низкая Низкая Низкая Низкая
Стойкость к коррозии Высокая Средняя Средняя Средняя Средняя

Изделия из алюминия со стальной трубкой под теплоноситель – рекордсмены по КПД. На сегодня 1 секция биметаллического радиатора намного быстрее прогревается и отдает больше тепла в атмосферу помещения, чем изделиях из других материалов. При предельной температуре наполнителя слышен характерный треск, поскольку у алюминия и стали разная теплопроводность и степень расширения при нагревании.

Теплоотдача радиаторов отопления таблица

Также есть батареи на основе медной трубки в алюминиевом кожухе – это самые дорогие биметаллические блоки. У них самые лучшие характеристики, высокая тепловая отдача и наиболее продолжительный срок эксплуатации. Недостатки – высокая стоимость и сложности в монтаже (лучше его доверить профессионалам).

Полезный совет! Оценивая эффективность разных моделей из одного металла, учитывают толщину стенки секции или трубки. Эти параметры должны быть указаны в описании к модели.

Радиаторы отопления из алюминия легче и дешевле, хотя немного уступают биметаллу по основным параметрам, включая мощность секции на1 квадратный метр. Трубчатые модели отличаются приятным дизайном, их легко перекрашивать под цвет помещения. Основной недостаток – вероятность деформации и протечки в мечтах сочленения при гидроударах и предельном давлении. По этой причине специалисты рекомендуют приобретать их для отопления частного сектора.

Стальной корпус отлично противостоит перепадам температур, меньше загрязняется, имея гладкую оцинкованную внутреннюю поверхность. Относительно небольшая цена, высокие темпы разогрева и хороший КПД – определяющие показатели, объясняющие их популярность. Однако со временем внутренний защитный слой разрушается под воздействием абразивных частиц теплоносителя.

Причины погрешностей в расчетах по показателям теплопроводности

Теплоотдача отопительной батареи – важный критерий мощности или энергии тепла, получаемого за определенное количество времени. Этот показатель измеряется в Вт/м*К или кал/час (есть разночтения в техническом описании к моделям). Для перевода величин пользуются соотношением

1,0 Вт/м*К= 859,8452279 кал/ч.

Биметалл (с медью) и алюминий лидируют по показателям тепловой отдачи. Однако при сравнении нередко возникают разночтения, даже когда верно выполнены все расчеты.

Теплоотдача радиаторов отопления с учетом типа металла представлена в таблице 2.

Таблица 2

Металл Теплопроводность Вт/(м*К)
Алюминий 237
Биметалл 185-212
Сталь (разной марки) 58-65
Чугун 52-60

Сложнее всего не ошибиться в показателях теплоотдачи алюминиевого радиатора и моделей из биметалла. Эти погрешности легко объяснить другими показателями:

  1. Теплоотдача зависит от конструктивной классификации модели (панельные, трубчатые и секционные), которые также отличаются межосевым расстоянием и степенью проходимости 1 кубометра теплоносителя за одинаковое время.
  2. Батареи выпускаются не из обычного алюминия, а из силумина (сплав с добавлением кремния).
  3. Степень контакта двух материалов в биметаллических конструкциях.
  4. Биметаллические модели бывают двух типов – медь + алюминий или стальная оцинковка + силумин.

Обратите внимание! Полная теплоотдача просчитывается на полном разогреве батареи.

Некоторые модели обладают определенной инертностью при прогревании, которая наблюдается в начале отопительного сезона. Поэтому нельзя сопоставлять теплоотдачу чугунных и биметаллических радиаторов, проверяя нагрев прикосновением руки, пока они по-настоящему не «разгонятся».

Теплоотдача радиаторов отопления таблица

Первых несколько часов уходит на прогревание всей системы и каждого радиатора в отдельности. Это время у каждой модели разное, многое зависит от засоренности отопительного контура. От советских чугунных «гармошек» не следует ожидать высокой тепловой отдачи. Они катастрофически засорены ржавчиной из труб, кальциевым и органическим осадком.

Тепловая отдача отопительных приборов на примере биметаллических батарей

В пределах одной ниши изделий табличные данные могут существенно варьироваться. Эти показатели зависят от нескольких определяющих факторов, включая модели батарей, толщину стенок и марку металла.
Сравнительные показатели тепловой отдачи для моделей от разных производителей сведены в таблицу 3.

Таблица 3

Модификация/ параметры Grandi 500 Tenrad 350 Tenrad 500 Альтермо РИО АльтермоЛРБ Style 350 Style 500
Формат (высота, ширина, глубина в мм) 580х80х80 425х80х80 550х80х77 570х82х80 575х85х80 425х80х80 575х80х80
Тепло-проводность Вт 167 120 160 166 169 125 268
Рабочее давление, бар 16 24 24 18 18 35 35

Важно! Для соответствия параметров тепловой отдачи одной секции батарей, указанной в таблице, важно утеплить жилье. В этом случае проще удерживать микроклимат на уровне комнатной температуры даже в лютые морозы.

Способы повышения теплоотдачи отопительной системы

Важно понимать, что указанные сведения – это усредненные данные. По факту теплоотдача радиаторов отопления, таблица и заявленные технические характеристики могут немного отличаться в реальных условиях. Суммарные потери тепла снижают КПД отопительного контура квартиры или дома.

Эффективные меры:

  • наружное утепление дома;
  • замена старых рассохшихся окон на двойные стеклопакеты нового образца, перевести их на время отопительного сезона в зимний режим;
  • если квартира находится на первом или последнем этажах, важно максимально утеплиться со стороны холодных смежных помещений;
  • за батареями на стене на зимнее время закрепить теплоотражающие панели из фольги;
  • эпизодически проводить продувку системы и чистку радиаторов, чтобы удалить осадок, снижающий эффективность оборудования (признак – теплые трубы и еле-еле теплые батареи);
  • при отделке стен (особенно в угловой спальне или детской), рекомендуется установить комплект стальных батарей – на 2-3 стены, независимо от количества окон, дополнительно ставят дизайнерские отопительные панели или вмонтированные в полы конвекционные блоки.

После качественного утепления стен желательно старую холодную отделку заменить на новую. Лучше натуральное дерево и пробковые листы, фактурная штукатурка без цемента и гипсовый «дикий камень». Также подойдут текстильные обои с бархатистой поверхностью и флизелин под покраску.

Теплоотдача радиаторов отопления таблица

Определяющие факторы для показателей теплоотдачи радиатора

В техническом описании к любой модели оборудования указаны важные параметры. На практике КПД может незначительно варьироваться из-за массы факторов:

  1. Конструктивные особенности – ребристые поверхности больше отдают тепла, чем плоские панели, а декоративные щиты забирают до 40% энергии.
  2. Расположение в подоконной нише и высота от уровня пола – холодный воздух обволакивает батарею, и чем больше доступ, тем качественнее  циркуляция воздуха в помещении.
  3. Конвекционные модели способствуют более активной циркуляции прогревания воздушного объема в помещении.
  4. Модельный ряд радиаторов огромен, но не для каждого блока найдется подходящее место по высоте, ширине и глубине.
  5. Разновидность теплоносителя (вода, антифриз), температура и расстояние от котла до конечной точки (большой процент  теряется по пути, отдавая тепло через трубы).
  6. Тепловая инертность металла (чугунные батареи при запуске долго прогреваются).
  7. Тип подключения (заполнение водой по диагонали более эффективно, чем боковой и нижний тип монтажа).
  8. Разновидность прибора по типу монтажа (настенные, вмонтированные и напольные радиаторы).
  9. Наличие покраски (металлические поверхности теплее окрашенных вариантов).

Полезный совет! Приобретение мощной модели для небольшой комнаты несет определенные сложности – приходится снижать температуру. Для этого на входе в батареи устанавливают специальные терморегулирующие клапаны, часто они предлагаются в комплекте.

Рекомендации по установке для усиления отдачи тепла

Отопительное оборудование рассчитано на то, что при его установке будут соблюдаться все нормы, делающие теплоотдачу наиболее оптимальной.

Теплоотдача радиаторов отопления таблица

Должна быть строго выдержана горизонталь радиатора, иначе в верхней точке будет наблюдаться завоздушивание. В теплоносителе в небольшом количестве растворено небольшое количество воздуха, плюс выделение газообразных веществ. Из этих мелких пузырьков со временем скапливаются воздушные карманы, снижающие КПД батареи. Для профилактики завоздушивания при установке батарей обязательно пользоваться универсальным строительным уровнем.

Одним из определяющих факторов эффективной работы радиаторов остается стандарт монтажа. До подоконника – в пределах 10-15 см ± 3см (в зависимости от размеров подоконного пространства). От пола – около 10-12 см (±3см) и до стены – минимум 5 см (можно больше).

Важно! Погрешность при установке (в сторону уменьшения расстояния до батареи) снижает тепловой коэффициент работы прибора на 8-10%. Это объясняется частичным прохождением воздушных масс через конструктивные элементы теплового блока.

Очевидно, что все данные таблиц можно принимать как ориентировочные, поскольку на мощность отопительных радиаторов, стальных, чугунных и биметаллических, влияет масса нюансов. Предлагается сравнить показатели разных моделей с помощью таблицы 4.

Таблица 4

Разновидность Тепловая отдача
М-140-АО (чугун) 175
М-90 130
РД-90 137
RIfar Alum (алюминий) 183
RoyalTermo Optimal 195
РИФАР Alp (биметалл) 171
РИФАР Base 204

Конструктивные отличия и тип металла – основные факторы, определяющие тепловую мощность радиаторов. Основные характеристики должны быть указаны в техническом описании к модели, однако не всегда можно верить написанному производителями в документах. Китайские подделки, заполонившие мировой рынок, зачастую сопровождаются «настоящими» сертификатами, обещают высокую теплоотдачу, ничем не подтвержденную на практике.

В техническом паспорте от одних производителей указаны параметры 1 секции, другие отмечают общий показатель модели данного формата. Поэтому важно внимательно читать сведения и вникать в важные показатели, чтобы не совершать ошибок.


Использованные источники

  1. ometallah.com/poleznoe/teploemkost-alyuminiya.html
  2. chemiday.com/blog/2016-11-13-37
  3. trubamaster.ru/dlya-otopleniya/teplootdacha-radiatorov-otopleniya-tablica-pokazatelej-osnovnyx-vidov.html

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.